
MATH 309: Homework #3 Solutions

Due on: May 1, 2017

Problem 1 A 2×2 Homogeneous Equation with Complex Eigenvalues

Without using matrix exponentials, find a fundamental set of solutions for the system
of equations

d

dx
~y = A~y, A =

(
3 2
−2 3

)
.

[Remember: the real part and the imaginary part of a solution is also a solution!]

. . . . . . . . .

Solution 1. The eigenvalues of the matrix are 3 ± 2i, and the corresponding eigen-
vectors are

(±i
−1

)
. From this we have the two solutions

~y1 =

(
i

−1

)
e(3+2i)x, ~y2 =

(
−i
−1

)
e(3−2i)x.

However, these are complex solutions. To get a real solution, we can choose one of
them and takes its real and imaginary parts. Note that

~y1 =

(
i

−1

)
e(3+2i)x =

(
i

−1

)
e3xe2ix

=

(
i

−1

)
e3x(cos(2x) + i sin(2x)) =

(
−e3x sin(2x)

−e3x cos(2x)

)
+ i

(
e3x cos(2x)

−e3x sin(2x)

)
Therefore we have that

Re(~y1) =

(
−e3x sin(2x)

−e3x cos(2x)

)
, Im(~y1) =

(
e3x cos(2x)

−e3x sin(2x)

)
and these two real functions form a fundamental set of solutions.



Problem 4 2

Problem 2 Stability of the Origin I

Consider the matrix A =

(
c 1
1 2

)
. For each value of c, classify the stability of the

critical point at the origin for the equation

d

dx
~y = A~y.

. . . . . . . . .

Solution 2. We calculate tr(A) = c+ 2 and det(A) = 2c−1. As c ranges through all
the real numbers, this parameterizes a straight line in the tr(A), det(A)-plane. The
slope of the line is 2, and it passes through the point tr(A) = 0, det(A) = −5, so the
equation of this line is

det(A) = 2tr(A) − 5.

This equation does not intersect with the critical curve det(A) = 1
4
tr(A)2, and there-

fore the matrix A always has real values. Furthermore, by plotting the line in the
tr(A), det(A)-plane we see that for our line of A’s the origin is either a saddle point or
an unstable node (ie source), and that the transition between these two occurs when
our line crosses the tr(A)-axis. This happens when det(A) = 0, eg. c = 1/2, and
therefore we have the following classification: the origin is a saddle point if c < 1/2,
and an unstable node if c > 1/2.

Problem 3 Stability of the Origin II

Consider the matrix A =

(
c 1
−1 2

)
. For each value of c, classify the stability of the

critical point at the origin for the equation

d

dx
~y = A~y.

. . . . . . . . .

Solution 3. We calculate tr(A) = c + 2 and det(A) = 2c + 1. Again, as c ranges
through all real numbers, this parameterizes a straight line in the tr(A), det(A)-plane.
The slope of the line is 2, and it passes through the point tr(A) = 0, det(A) = −3, so
the equation of this line is

det(A) = 2tr(A) − 3.

This equation does intersect with the critical curve det(A) = 1
4
tr(A)2 when tr(A)2 −

8tr(A) + 12 = 0. This occurs when tr(A) = 2 and tr(A) = 6, corresponding to c = 0
and c = 4. Therefore during this time we are an unstable spiral. Before this, we pass
through the tr(A)-axis at c = −1/2, so we have the following classification: the origin
is an unstable spiral if 0 < c < 4, an unstable node if −1/2 < c < 0 or c > 4 and a
saddle if c < −1/2.
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Problem 4 Nonhomogeneous Equations I

Determine the solution of the initial value problem

d

dx
~y = A~y +~b(x), A =

(
1 3
3 1

)
, ~b(x) =

(
e2x

0

)
, ~y(0) =

(
1

1

)
.

. . . . . . . . .

Solution 4. The eigenvalues of A are −2 and 4, so using our matrix exponential
tricks we calculate a fundamental matrix:

Φ(x) = exp(Ax) = (A+ 2I)
1

4 + 2
e4x + (A− 4I)

1

−2 − 4
e−2x

=

(
(1/2)e4x + (1/2)e−2x (1/2)e4x − (1/2)e−2x

(1/2)e4x − (1/2)e−2x (1/2)e4x + (1/2)e−2x

)
Furthermore since 2 is not an eigenvalue of the matrix, we may use the method of
undetermined coefficients to find a solution. To do so, we propose a solution of the
form ~yp = ~ve2x. Then we calculate

2~ve2x = A~ve2x +

(
e2x

0

)
.

Dividing out by e2x and simplifying, we obtain:

(A− 2I)~v =

(
−1

0

)
.

Multiplying both sides by the inverse of A − 2I, we obtain ~v =
(−1/8
−3/8

)
. Therefore a

particular solution is ~yp =
(−1/8
−3/8

)
e2x. The general solution is therefore

~y = ~yp + ~yh =

(
−1/8

−3/8

)
e2x + Φ(x)~c.

Now plugging in our initial condition, we obtain (using the fact that Φ(0) = I)(
1

1

)
=

(
−1/8

−3/8

)
+ I~c.

Therefore ~c =
(
9/8
11/8

)
, and the solution of the IVP is

~y = ~yp + ~yh =

(
−1/8

−3/8

)
e2x + Φ(x)

(
9/8

11/8

)
.
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Problem 5 Nonhomogeneous Equations II

Determine the solution of the initial value problem

d

dx
~y = A~y +~b(x), A =

(
1 3
3 1

)
, ~b(x) =

(
e4x

0

)
, ~y(0) =

(
0

1

)
.

. . . . . . . . .

Solution 5. We determined the eigenvalues and found the fundamental matrix for
this equation last time, so to start out we need to find a particular solution. The
method of undetermined coefficients won’t work here, since 4 is an eigenvalue of A.
Therefore we should use something else, such as diagonalization. Since the eigenvalues
of A are 4 and −2, our trick for finding eigenvectors for 2 × 2 matrices gives us an
eigenvector

(
3
3

)
for eigenvalue 4 and an eigenvector −33 for eigenvalue −2. Therefore

we should take P =

(
3 −3
3 3

)
, N =

(
4 0
0 −2

)
. Then P−1 = 1

18

(
3 3
−3 3

)
, and

substituting ~y = P~z, our system reduces to

d

dx
~z = N~z + P−1~b

Furthermore, we calculate P−1~b = 1
18

(
3
−3

)
e4x and letting ~z =

(
z1
z2

)
the above reduces

to the system of two ordinary equations

z′1 = 4z1 +
3

18
e4x, z′2 = −2z2 −

3

18
e4x.

Using the method of integrating factors, we find solutions:

z1 =
3

18
xe4x, z2 = − 1

36
e4x.

Then

~yp = P~z = P

(
3x/18

−1/36

)
e4x =

(
x/2 + 1/12

x/2 − 1/12

)
e4x.

Then using the value of Φ from the last problem, the general solution is seen to be

~y = ~yp + ~yh =

(
x/2 + 1/12

x/2 − 1/12

)
e4x + Φ(x)~c.

Plugging in our initial conditions, we obtain(
0

1

)
=

(
1/12

−1/12

)
+ ~c,

and therefore ~c =
(−1/12
13/12

)
. The solution of the initial value problem is therefore

~y = ~yp + ~yh =

(
x/2 + 1/12

x/2 − 1/12

)
e4x + Φ(x)

(
−1/12

13/12

)
.
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Problem 6 Matrices with One Eigenvalue

Let A be a 2 × 2 matrix, and suppose that A has exactly one eigenvalue λ with
algebraic multiplicity 2. In this problem, we will show that

exp(Ax) = Ieλx + (A− λI)xeλx (1)

(a) Define the matrix N = (A− λI). Show that N2 = 0.

(b) Show that since N2 = 0, we have exp(Nx) = I +Nx

(c) Complete the proof of Equation (1) by using Proposition (1) below.

. . . . . . . . .

Solution 6.

(a) Since A has an eigenvalue λ with algebraic multiplicity 2, there are only two

possible Jordan normal forms for A, namely J =

(
λ 1
0 λ

)
or J =

(
λ 0
0 λ

)
.

Furthermore, there exists some matrix P satisfying P−1AP = J . It follows that

P−1NP = P−1(A− λI)P = P−1AP − P−1(λI)P = P−1AP − λP−1IP = J − λI

Note that J−λI =

(
0 1
0 0

)
or J−λI =

(
0 0
0 0

)
. In either case (J−λI)2 = 0,

and therefore
(P−1NP )2 = (J − λI)2 = 0.

However, (P−1NP )2 = P−1N2P , so this shows that P−1N2P = 0. Multiplying
by P on the left and P−1 on the right, thish shows that N2 = 0.

(b) By definition,

exp(Nx) = I+Nx+
1

2
N2x2+

1

3!
N3x3+· · · = I+Nx+

1

2
0x2+

1

3!
0x3+· · · = I+NX.

(c) Since Iλ and N commute and A = N + λI, the Proposition below tells us that

exp(Ax) = exp(Nx+ λIx) = exp(Nx) exp(λIx) = (I +Nx) exp(λx)I.

Then replacing N with its value A− λI gives us the identity we wanted.

Proposition 1. Suppose that B,C are two n×n matrices which commute, ie. AB =
BA. Then

exp(Ax+Bx) = exp(Ax) exp(Bx).
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