
MATH 309: Homework #5

Due on: May 26, 2017

Problem 1 Boundary Value Problems

For each of the following boundary value problems, find all solutions to the boundary
value problem or show that no solution exists.

(a) y′′ + y = 0, y(0) = 0, y′(π) = 1

(b) y′′ + y = 0, y(0) = 0, y(L) = 0

(c) y′′ + y = x, y(0) = 0, y(π) = 0

. . . . . . . . .

Solution 1. In each case, the general solution is

y(x) = A cos(x) +B sin(x),

so the question is whether or not we can find constants A,B satisfying the boundary
conditions.

(a) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x). The
condition y′(π) = 0 implies that B = 0, and therefore the only solution is the
trivial solution y = 0.

(b) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x). The
condition y(L) = 0 implies that B sin(L) = 0, and therefore either B = 0, giving
us the trivial solution, or else L = nπ for some integer n, in which case B can be
anything! Thus we have two cases: if L is not an integer multiple of π, then the
only solution is the trivial solution y = 0. If L = nπ for some integer n, then the
family of all solutions is y = B sin(x).

(c) The condition y(0) = 0 implies that A = 0. Therefore y(x) = B sin(x), therefore
the condition y(π) = 0 is automatically satisfied, leaving implies that B = 0, and
therefore the only solution is the trivial solution y = 0.
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Problem 2 Dirichlet Eigenvalue Problem

Determine for which values of λ the boundary value problem

y′′ + λy = 0, y(0) = 0, y(L) = 0,

has a solution and describe the solutions.

. . . . . . . . .

Solution 2. It’s important to note that the values of λ which work will be dependent
on the value of L – this relationship between λ and L becomes important in the
method of separation of variables later on. Let’s first think about the general solution
to y′′ + λy. The characteristic polynomial of this equation is x2 + λ, which has
roots ±

√
−λ. The general solution therefore takes three distinct forms, depending on

whether λ is positive, negative, or zero.
Case A (λ < 0):
In this case,

√
−λ is real, so the general solution is

y = Ae
√
−λx +Be−

√
−λx.

Then since y(0) = 0, we have A + B = 0. Furthermore, since y(L) = 0 we have
Ae
√
−λL + Be−

√
−λL = 0. Thus we have a homogeneous system of two equations and

two unknowns. In matrix form, this is(
1 1

e
√
−λL e−

√
−λL

)(
A

B

)
=

(
0

0

)
.

The determinant of the above matrix is e−
√
−λL− e

√
−λL, which is nonzero. Therefore

the matrix is nonsingular, and the homogeneous system of equations has exactly one
solution: the trivial solution. Therefore A = B = 0, making y = 0 the only solution
to the boundary value problem.
Case B (λ = 0):
In this case,

√
−λ is 0, so the general solution is

y = A+Bx.

Then since y(0) = 0, we have A = 0. Furthermore, since y(L) = 0 we have A+BL =
0. Since A = 0, this also says that B = 0, and therefore the only solution is the
trivial solution y = 0.
Case C (λ > 0):
In this case,

√
−λ = i

√
λ is imaginary, so the general solution is

y = A cos(
√
λx) +B sin(

√
λx).

Then since y(0) = 0, we have A = 0, making y = B sin(
√
λx). Then since y(L) = 0,

we have that B = 0 or sin(
√
λL) = 0. In the former case, y = 0. In the latter
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case,
√
λL = nπ for some integer n and therefore λ = n2π2/L2. In this case y =

B sin(
√
λx) = B sin(nπx/L) is a solution for any value of B.

SUMMARY:
The boundary value problem has at least one solution for every value of λ: the trivial
solution. The boundary value problem has more than the trivial solution exactly
when λ = n2π2/L2 for some nonzero integer n, in which case anything of the form
B sin(nπx/L) is a solution.

Problem 3 Neumann Eigenvalue Problem

Determine for which values of λ the boundary value problem

y′′ + λy = 0, y′(0) = 0, y′(L) = 0,

has a solution and describe the solutions.

. . . . . . . . .

Solution 3. It’s important to note that the values of λ which work will be dependent
on the value of L – this relationship between λ and L becomes important in the
method of separation of variables later on. Let’s first think about the general solution
to y′′ + λy. The characteristic polynomial of this equation is x2 + λ, which has
roots ±

√
−λ. The general solution therefore takes three distinct forms, depending on

whether λ is positive, negative, or zero.
Case A (λ < 0):
In this case,

√
−λ is real, so the general solution is

y = Ae
√
−λx +Be−

√
−λx.

We note that
y′ =

√
−λ(Ae

√
−λx −Be−

√
−λx).

Then since y′(0) = 0, we have A − B = 0. Furthermore, since y′(L) = 0 we have
Ae
√
−λL − Be−

√
−λL = 0. Thus we have a homogeneous system of two equations and

two unknowns. In matrix form, this is(
1 −1

e
√
−λL −e−

√
−λL

)(
A

B

)
=

(
0

0

)
.

The determinant of the above matrix is e
√
−λL− e−

√
−λL, which is nonzero. Therefore

the matrix is nonsingular, and the homogeneous system of equations has exactly one
solution: the trivial solution. Therefore A = B = 0, making y = 0 the only solution
to the boundary value problem.
Case B (λ = 0):
In this case,

√
−λ is 0, so the general solution is

y = A+Bx.
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We note that
y′ = B

Then since y′(0) = 0, we have B = 0. Furthermore, since y′(L) = 0 we have B = 0,
again. Thus y = A is a solution for any value of A. Case C (λ > 0):
In this case,

√
−λ = i

√
λ is imaginary, so the general solution is

y = A cos(
√
λx) +B sin(

√
λx).

We note that
y′ =

√
λx(B cos(

√
λx)− A sin(

√
λx)).

Then since y′(0) = 0, we have B = 0, making y = A cos(
√
λx). Then since y′(L) = 0,

we have that A = 0 or sin(
√
λL) = 0. In the former case, y = 0. In the latter

case,
√
λL = nπ for some integer n and therefore λ = n2π2/L2. In this case y =

A cos(
√
λx) = A cos(nπx/L) is a solution for any value of B.

SUMMARY:
The boundary value problem has at least one solution for every value of λ: the trivial
solution. The boundary value problem has more than the trivial solution exactly when
λ = 0 or λ = n2π2/L2 for some nonzero integer n. If λ = 0, then anything of the form
y = A is a solution. If λ = n2π2/L2, then anything of the form y = A cos(nπx/L) is
a solution.

Problem 4 Even and Odd Functions

Prove that any function f(x) may be expressed as a sum of two functions f(x) =
g(x) + h(x) with g(x) even and h(x) odd. [Hint: consider f(x) + f(−x)].

. . . . . . . . .

Solution 4. In order to prove the statement we want, we need to show that for
any function f(x), there exists an even function g(x) and an odd function h(x) with
f(x) = g(x) + h(x). In particular, we need to come up with equations for g(x) and
h(x) in terms of f(x). How can we do this? One way is to assume that g(x) and h(x)
are known to exist, and then fiddle around with f(x) to figure out the equations. In
particular if g(x) is even and h(x) is odd and f(x) = g(x) + h(x) then

f(−x) = g(−x) + h(−x) = g(x)− h(x).

It follows that

f(x) + f(−x) = g(x) + h(x) + (g(x)− h(x)) = 2g(x),

and therefore we should take g(x) = (f(x) + f(−x))/2. Similarly, we have that

f(x)− f(−x) = g(x) + h(x)− (g(x)− h(x)) = 2h(x),

and therfore we should take h(x) = (f(x)− f(−x))/2. Great!
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What we did above is just a bunch of scratch work. Here’s our actual proof:
Suppose that f(x) is a function. Define g(x) = (f(x) + f(−x))/2 and h(x) = (f(x)−
f(−x))/2. Then since

g(−x) = (f(−x) + f(−− x))/2 = (f(−x) + f(x))/2 = (f(x) + f(−x))/2 = g(x)

we have that g(x) is even. Similarly

h(−x) = (f(−x)− f(−− x))/2 = (f(−x)− f(x))/2 = −(f(x)− f(−x))/2 = −h(x)

and therefore h(x) is odd. Furthermore

g(x) + h(x) = (f(x) + f(−x))/2 + (f(x)− f(−x))/2 = f(x).

Therefore f(x) = g(x) +h(x) is a sum of an even function and an odd function. This
completes our proof.

Problem 5 Even and Odd Functions

Prove that the derivative of an even function is odd and that the derivative of an odd
function is even.

. . . . . . . . .

Solution 5. There are many great ways to prove this fact. We will use one of the
simplest methods: the chain rule. Let g(x) = f(−x). Then by the chain rule

g′(x) = −f ′(−x).

Now let’s suppose f(x) is an even function. Then in this case g(x) = f(x), making
g′(x) = f ′(x), so that the above expression reads f ′(x) = −f ′(−x). Since x was
arbitrary, this shows that f ′(x) is odd when f(x) is even. Alternatively, let’s suppose
that f(x) is an odd function. Then g(x) = −f(x), making g′(x) = −f ′(x), so that
the expression we derived from the chain rule reads −f ′(x) = −f ′(−x), and hence
f ′(x) = f ′(−x). Since x was arbitrary, this shows that f ′(x) is even when f(x) is
odd. This completes our proof.

Problem 6 Sine Series

Consider the function

f(x) =


0, 0 < x < π
1, π < x < 2π
2, 2π < x < 3π

(a) Scketch a graph of f(x)

(b) By reflecting f appropriately, express f as a sine series.
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(c) Plot three different partial sums of the sine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the sine series converges for three periods.

. . . . . . . . .

Solution 6.

(a)

(b) To express f(x) as a sine series, we create a new function g(x) which is odd and
periodic by reflecting f(x) oddly accross the y-axis, and then defining g(x+6π) =
g(x) for all x. Since g(x) is periodic, it has a Fourier series, and since g(x) is odd,
all of the cosine terms will be gone, leaving just the sine terms. We can calculate
the associated coefficients by using the Euler-Fourier formula:

bn =
1

3π

∫ 3π

−3π
g(x) sin(nπx/(3π))dx.

Now since g(x) is odd, the integrand is even, so we can simply integrate from 0 to
3π and multiply by 2 to get the value of bn. Moreover, from 0 to 3π the function
g(x) agrees with f(x), and therefore

bn =
2

3π

∫ 3π

0

f(x) sin(nx/3)dx.

Now in order to do this intergral, we need to break it up into the three separate
intervals where f(x) is individually defined:

bn =
2

3π

(∫ π

0

0 sin(nx/3) +

∫ 2π

π

1 sin(nx/3)dx+

∫ 3π

2π

3 sin(nx/3)dx

)
.

MATH 309 HW # 5



Problem 6 7

The integrals themselves are pretty easy. Evaluating them, we obtain:

bn =
2

3π

(
0 +
−3

n
(cos(2nπ/3)− cos(nπ/3))dx+

−9

n
(cos(3nπ/3)− cos(2nπ/3))

)
.

Now we want to use the fact that

cos(mπ/3) =


1/2, m = ±1 + 6k
−1/2, m = ±2 + 6k

1, m = 0 + 6k
−1, m = 3 + 6k

Using this, the expression for bn reduces to

bn =


5/(nπ), n = ±1 + 6k
−9/(nπ), n = ±2 + 6k

0, n = 0 + 6k
8/(nπ), n = 3 + 6k

Using these values of bn, we have

f(x) =
∞∑
n=1

bn sin(nx/3).

(c)
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(d)

Problem 7 Cosine Series

Consider the function

f(x) =

{
x, 0 < x < π
0, π < x < 2π

(a) Scketch a graph of f(x)

(b) By reflecting f appropriately, express f as a cosine series.

(c) Plot three different partial sums of the cosine series, clearly indicating the partial
sums being plotted.

(d) Sketch a graph of the function to which the cosine series converges for three
periods.

. . . . . . . . .

Solution 7.
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(a)

(b) To express f(x) as a cosine series, we create a new function g(x) which is even and
periodic by reflecting f(x) evenly accross the y-axis, and then defining g(x+4π) =
g(x) for all x. Since g(x) is periodic, it has a Fourier series, and since g(x) is
even, all of the sine terms will be gone, leaving just the cosine terms. We can
calculate the associated coefficients by using the Euler-Fourier formula:

an =
1

2π

∫ 2π

−2π
g(x) cos(nπx/(2π))dx.

Now since g(x) is odd, the integrand is even, so we can simply integrate from 0 to
2π and multiply by 2 to get the value of an. Moreover, from 0 to 2π the function
g(x) agrees with f(x), and therefore

an =
1

π

∫ 2π

0

f(x) cos(nx/2)dx.

Now in order to do this intergral, we need to break it up into the two separate
intervals where f(x) is individually defined:

an =
1

π

(∫ π

0

x cos(nx/2) +

∫ 2π

π

0 cos(nx/2)dx

)
.

To evaluate this integral, we use integration by parts, obtaining:

an =
−2

n
cos(nπ/2) =

{
((−1)n/2 − 1)4/(n2π) n even

(−1)(n+1)/22/n− 4/(n2π) n odd

This expression does not work however for n = 0 since in the calculation we
divided by n. We must do this separately:

a0 =
1

π

∫ 2π

0

f(x)dx =
1

π

∫ π

0

xdx =
1

2
π.
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Using these values of an, we have

f(x) =
a0
2

+
∞∑
n=1

an cos(nπx/3).

(c)

(d)
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