MATH 309: Homework $#5$

Due on: May 26, 2017

Problem 1 Boundary Value Problems

For each of the following boundary value problems, find all solutions to the boundary value problem or show that no solution exists.

- (a) $y'' + y = 0, y(0) = 0, y'(\pi) = 1$
- (b) $y'' + y = 0$, $y(0) = 0$, $y(L) = 0$
- (c) $y'' + y = x$, $y(0) = 0$, $y(\pi) = 0$

.

Solution 1. In each case, the general solution is

$$
y(x) = A\cos(x) + B\sin(x),
$$

so the question is whether or not we can find constants A, B satisfying the boundary conditions.

- (a) The condition $y(0) = 0$ implies that $A = 0$. Therefore $y(x) = B \sin(x)$. The condition $y'(\pi) = 0$ implies that $B = 0$, and therefore the only solution is the trivial solution $y = 0$.
- (b) The condition $y(0) = 0$ implies that $A = 0$. Therefore $y(x) = B \sin(x)$. The condition $y(L) = 0$ implies that $B \sin(L) = 0$, and therefore either $B = 0$, giving us the trivial solution, or else $L = n\pi$ for some integer n, in which case B can be anything! Thus we have two cases: if L is not an integer multiple of π , then the only solution is the trivial solution $y = 0$. If $L = n\pi$ for some integer n, then the family of all solutions is $y = B \sin(x)$.
- (c) The condition $y(0) = 0$ implies that $A = 0$. Therefore $y(x) = B \sin(x)$, therefore the condition $y(\pi) = 0$ is automatically satisfied, leaving implies that $B = 0$, and therefore the only solution is the trivial solution $y = 0$.

Problem 2 Dirichlet Eigenvalue Problem

Determine for which values of λ the boundary value problem

$$
y'' + \lambda y = 0, \ y(0) = 0, \ y(L) = 0,
$$

has a solution and describe the solutions.

.

Solution 2. It's important to note that the values of λ which work will be dependent on the value of L – this relationship between λ and L becomes important in the method of separation of variables later on. Let's first think about the general solution to $y'' + \lambda y$. The characteristic polynomial of this equation is $x^2 + \lambda$, which has roots $\pm \sqrt{-\lambda}$. The general solution therefore takes three distinct forms, depending on whether λ is positive, negative, or zero.

Case A $(\lambda < 0)$: **Case A** (λ < 0):
In this case, $\sqrt{-\lambda}$ is real, so the general solution is

$$
y = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}.
$$

Then since $y(0) = 0$, we have $A + B = 0$. Furthermore, since $y(L) = 0$ we have $Ae^{\sqrt{-\lambda L}} + Be^{-\sqrt{-\lambda L}} = 0$. Thus we have a homogeneous system of two equations and two unknowns. In matrix form, this is

$$
\begin{pmatrix} 1 & 1 \ e^{\sqrt{-\lambda}L} & e^{-\sqrt{-\lambda}L} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

The determinant of the above matrix is $e^{-\sqrt{-\lambda}L} - e^{\sqrt{-\lambda}L}$, which is nonzero. Therefore the matrix is nonsingular, and the homogeneous system of equations has exactly one solution: the trivial solution. Therefore $A = B = 0$, making $y = 0$ the only solution to the boundary value problem.

Case B $(\lambda = 0)$: Case **B** ($\lambda = 0$):
In this case, $\sqrt{-\lambda}$ is 0, so the general solution is

$$
y = A + Bx.
$$

Then since $y(0) = 0$, we have $A = 0$. Furthermore, since $y(L) = 0$ we have $A + BL =$ 0. Since $A = 0$, this also says that $B = 0$, and therefore the only solution is the trivial solution $y = 0$.

Case C $(\lambda > 0)$: **Case** C ($\lambda > 0$):
In this case, $\sqrt{-\lambda} = i$ √ λ is imaginary, so the general solution is

$$
y = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x).
$$

Then since $y(0) = 0$, we have $A = 0$, making $y = B \sin(\sqrt{\lambda}x)$. Then since $y(L) = 0$, Then since $y(0) = 0$, we have $A = 0$, making $y = B \sin(\sqrt{\lambda}L)$. Then since $y(L) = 0$,
we have that $B = 0$ or $\sin(\sqrt{\lambda}L) = 0$. In the former case, $y = 0$. In the latter case, $\sqrt{\lambda}L = n\pi$ for some integer n and therefore $\lambda = n^2\pi^2/L^2$. In this case $y =$ case, $\sqrt{\lambda}L = n\pi$ for some integer *n* and therefore $\lambda = n^2\pi$
 $B \sin(\sqrt{\lambda}x) = B \sin(n\pi x/L)$ is a solution for any value of *B*.

SUMMARY:

The boundary value problem has at least one solution for every value of λ : the trivial solution. The boundary value problem has more than the trivial solution exactly when $\lambda = n^2 \pi^2 / L^2$ for some nonzero integer n, in which case anything of the form $B\sin(n\pi x/L)$ is a solution.

Problem 3 Neumann Eigenvalue Problem

Determine for which values of λ the boundary value problem

$$
y'' + \lambda y = 0, \ y'(0) = 0, \ y'(L) = 0,
$$

has a solution and describe the solutions.

$$
\ldots \ldots \ldots
$$

Solution 3. It's important to note that the values of λ which work will be dependent on the value of L – this relationship between λ and L becomes important in the method of separation of variables later on. Let's first think about the general solution to $y'' + \lambda y$. The characteristic polynomial of this equation is $x^2 + \lambda$, which has roots $\pm\sqrt{-\lambda}$. The general solution therefore takes three distinct forms, depending on whether λ is positive, negative, or zero.

Case A $(\lambda < 0)$:

Case A (λ < 0):
In this case, $\sqrt{-\lambda}$ is real, so the general solution is

$$
y = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}.
$$

We note that

$$
y' = \sqrt{-\lambda} (A e^{\sqrt{-\lambda}x} - B e^{-\sqrt{-\lambda}x}).
$$

Then since $y'(0) = 0$, we have $A - B = 0$. Furthermore, since $y'(L) = 0$ we have Then since $g(0) = 0$, we have $A - B = 0$. Furthermore, since $g(D) = 0$ we have $Ae^{\sqrt{-\lambda}L} - Be^{-\sqrt{-\lambda}L} = 0$. Thus we have a homogeneous system of two equations and two unknowns. In matrix form, this is

$$
\begin{pmatrix} 1 & -1 \ e^{\sqrt{-\lambda}L} & -e^{-\sqrt{-\lambda}L} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
$$

The determinant of the above matrix is $e^{\sqrt{-\lambda}L} - e^{-\sqrt{-\lambda}L}$, which is nonzero. Therefore the matrix is nonsingular, and the homogeneous system of equations has exactly one solution: the trivial solution. Therefore $A = B = 0$, making $y = 0$ the only solution to the boundary value problem.

Case B $(\lambda = 0)$: **Case B** ($\lambda = 0$):
In this case, $\sqrt{-\lambda}$ is 0, so the general solution is

$$
y = A + Bx.
$$

We note that

$$
y' = B
$$

Then since $y'(0) = 0$, we have $B = 0$. Furthermore, since $y'(L) = 0$ we have $B = 0$, again. Thus $y = A$ is a solution for any value of A. Case C $(\lambda > 0)$: again. Thus $y = A$ is a solution for any value of A. Case C (λ)
In this case, $\sqrt{-\lambda} = i\sqrt{\lambda}$ is imaginary, so the general solution is

$$
y = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x).
$$

We note that

$$
y' = \sqrt{\lambda x} (B \cos(\sqrt{\lambda} x) - A \sin(\sqrt{\lambda} x)).
$$

Then since $y'(0) = 0$, we have $B = 0$, making $y = A \cos(\sqrt{\lambda}x)$. Then since $y'(L) = 0$, Then since $y(0) = 0$, we have $B = 0$, making $y = A \cos(\sqrt{\lambda}x)$. Then since $y(L) = 0$,
we have that $A = 0$ or $\sin(\sqrt{\lambda}L) = 0$. In the former case, $y = 0$. In the latter we have that $A = 0$ or $\sin(\sqrt{\lambda}L) = 0$. In the former case, $y = 0$. In the latter case, $\sqrt{\lambda}L = n\pi$ for some integer n and therefore $\lambda = n^2\pi^2/L^2$. In this case $y =$ case, $\sqrt{\lambda}L = n\pi$ for some integer *n* and therefore $\lambda = n\pi$.
 $A \cos(\sqrt{\lambda}x) = A \cos(n\pi x/L)$ is a solution for any value of *B*.

SUMMARY:

The boundary value problem has at least one solution for every value of λ : the trivial solution. The boundary value problem has more than the trivial solution exactly when $\lambda = 0$ or $\lambda = n^2 \pi^2 / L^2$ for some nonzero integer n. If $\lambda = 0$, then anything of the form $y = A$ is a solution. If $\lambda = n^2 \pi^2 / L^2$, then anything of the form $y = A \cos(n \pi x/L)$ is a solution.

Problem 4 Even and Odd Functions

Prove that any function $f(x)$ may be expressed as a sum of two functions $f(x) =$ $g(x) + h(x)$ with $g(x)$ even and $h(x)$ odd. [Hint: consider $f(x) + f(-x)$].

.

Solution 4. In order to prove the statement we want, we need to show that for any function $f(x)$, there exists an even function $g(x)$ and an odd function $h(x)$ with $f(x) = q(x) + h(x)$. In particular, we need to come up with equations for $q(x)$ and $h(x)$ in terms of $f(x)$. How can we do this? One way is to assume that $q(x)$ and $h(x)$ are known to exist, and then fiddle around with $f(x)$ to figure out the equations. In particular if $g(x)$ is even and $h(x)$ is odd and $f(x) = g(x) + h(x)$ then

$$
f(-x) = g(-x) + h(-x) = g(x) - h(x).
$$

It follows that

$$
f(x) + f(-x) = g(x) + h(x) + (g(x) - h(x)) = 2g(x),
$$

and therefore we should take $g(x) = (f(x) + f(-x))/2$. Similarly, we have that

$$
f(x) - f(-x) = g(x) + h(x) - (g(x) - h(x)) = 2h(x),
$$

and therfore we should take $h(x) = (f(x) - f(-x))/2$. Great!

What we did above is just a bunch of scratch work. Here's our actual proof: Suppose that $f(x)$ is a function. Define $g(x) = (f(x) + f(-x))/2$ and $h(x) = (f(x)$ $f(-x)/2$. Then since

$$
g(-x) = (f(-x) + f(-x))/2 = (f(-x) + f(x))/2 = (f(x) + f(-x))/2 = g(x)
$$

we have that $g(x)$ is even. Similarly

$$
h(-x) = (f(-x) - f(-x))/2 = (f(-x) - f(x))/2 = -(f(x) - f(-x))/2 = -h(x)
$$

and therefore $h(x)$ is odd. Furthermore

$$
g(x) + h(x) = (f(x) + f(-x))/2 + (f(x) - f(-x))/2 = f(x).
$$

Therefore $f(x) = g(x) + h(x)$ is a sum of an even function and an odd function. This completes our proof.

Problem 5 Even and Odd Functions

Prove that the derivative of an even function is odd and that the derivative of an odd function is even.

.

Solution 5. There are many great ways to prove this fact. We will use one of the simplest methods: the chain rule. Let $g(x) = f(-x)$. Then by the chain rule

$$
g'(x) = -f'(-x).
$$

Now let's suppose $f(x)$ is an even function. Then in this case $g(x) = f(x)$, making $g'(x) = f'(x)$, so that the above expression reads $f'(x) = -f'(-x)$. Since x was arbitrary, this shows that $f'(x)$ is odd when $f(x)$ is even. Alternatively, let's suppose that $f(x)$ is an odd function. Then $g(x) = -f(x)$, making $g'(x) = -f'(x)$, so that the expression we derived from the chain rule reads $-f'(x) = -f'(-x)$, and hence $f'(x) = f'(-x)$. Since x was arbitrary, this shows that $f'(x)$ is even when $f(x)$ is odd. This completes our proof.

Problem 6 Sine Series

Consider the function

$$
f(x) = \begin{cases} 0, & 0 < x < \pi \\ 1, & \pi < x < 2\pi \\ 2, & 2\pi < x < 3\pi \end{cases}
$$

- (a) Scketch a graph of $f(x)$
- (b) By reflecting f appropriately, express f as a sine series.
- (c) Plot three different partial sums of the sine series, clearly indicating the partial sums being plotted.
- (d) Sketch a graph of the function to which the sine series converges for three periods.

.

Solution 6.

(b) To express $f(x)$ as a sine series, we create a new function $g(x)$ which is odd and periodic by reflecting $f(x)$ oddly accross the y-axis, and then defining $g(x+6\pi)$ = $g(x)$ for all x. Since $g(x)$ is periodic, it has a Fourier series, and since $g(x)$ is odd, all of the cosine terms will be gone, leaving just the sine terms. We can calculate the associated coefficients by using the Euler-Fourier formula:

$$
b_n = \frac{1}{3\pi} \int_{-3\pi}^{3\pi} g(x) \sin(n\pi x/(3\pi)) dx.
$$

Now since $q(x)$ is odd, the integrand is even, so we can simply integrate from 0 to 3π and multiply by 2 to get the value of b_n . Moreover, from 0 to 3π the function $g(x)$ agrees with $f(x)$, and therefore

$$
b_n = \frac{2}{3\pi} \int_0^{3\pi} f(x) \sin(nx/3) dx.
$$

Now in order to do this intergral, we need to break it up into the three separate intervals where $f(x)$ is individually defined:

$$
b_n = \frac{2}{3\pi} \left(\int_0^{\pi} 0 \sin(nx/3) + \int_{\pi}^{2\pi} 1 \sin(nx/3) dx + \int_{2\pi}^{3\pi} 3 \sin(nx/3) dx \right).
$$

The integrals themselves are pretty easy. Evaluating them, we obtain:

$$
b_n = \frac{2}{3\pi} \left(0 + \frac{-3}{n} (\cos(2n\pi/3) - \cos(n\pi/3)) dx + \frac{-9}{n} (\cos(3n\pi/3) - \cos(2n\pi/3)) \right).
$$

Now we want to use the fact that

$$
\cos(m\pi/3) = \begin{cases} 1/2, & m = \pm 1 + 6k \\ -1/2, & m = \pm 2 + 6k \\ 1, & m = 0 + 6k \\ -1, & m = 3 + 6k \end{cases}
$$

Using this, the expression for b_n reduces to

$$
b_n = \begin{cases} 5/(n\pi), & n = \pm 1 + 6k \\ -9/(n\pi), & n = \pm 2 + 6k \\ 0, & n = 0 + 6k \\ 8/(n\pi), & n = 3 + 6k \end{cases}
$$

Using these values of b_n , we have

$$
f(x) = \sum_{n=1}^{\infty} b_n \sin(nx/3).
$$

Problem 7 Cosine Series

Consider the function

$$
f(x) = \begin{cases} x, 0 < x < \pi \\ 0, \pi < x < 2\pi \end{cases}
$$

- (a) Scketch a graph of $f(x)$
- (b) By reflecting f appropriately, express f as a cosine series.
- (c) Plot three different partial sums of the cosine series, clearly indicating the partial sums being plotted.
- (d) Sketch a graph of the function to which the cosine series converges for three periods.

.

Solution 7.

(b) To express $f(x)$ as a cosine series, we create a new function $g(x)$ which is even and periodic by reflecting $f(x)$ evenly accross the y-axis, and then defining $g(x+4\pi) =$ $g(x)$ for all x. Since $g(x)$ is periodic, it has a Fourier series, and since $g(x)$ is even, all of the sine terms will be gone, leaving just the cosine terms. We can calculate the associated coefficients by using the Euler-Fourier formula:

$$
a_n = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} g(x) \cos(n\pi x/(2\pi)) dx.
$$

Now since $g(x)$ is odd, the integrand is even, so we can simply integrate from 0 to 2π and multiply by 2 to get the value of a_n . Moreover, from 0 to 2π the function $g(x)$ agrees with $f(x)$, and therefore

$$
a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx/2) dx.
$$

Now in order to do this intergral, we need to break it up into the two separate intervals where $f(x)$ is individually defined:

$$
a_n = \frac{1}{\pi} \left(\int_0^{\pi} x \cos(nx/2) + \int_{\pi}^{2\pi} 0 \cos(nx/2) dx \right).
$$

To evaluate this integral, we use integration by parts, obtaining:

$$
a_n = \frac{-2}{n} \cos(n\pi/2) = \begin{cases} ((-1)^{n/2} - 1)4/(n^2\pi) & n \text{ even} \\ (-1)^{(n+1)/2}2/n - 4/(n^2\pi) & n \text{ odd} \end{cases}
$$

This expression does not work however for $n = 0$ since in the calculation we divided by n. We must do this separately:

$$
a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{\pi} x dx = \frac{1}{2}\pi.
$$

Using these values of a_n , we have

$$
f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x/3).
$$

