
MATH 309: Homework #6

Due on: May 25, 2016

Problem 1 Heat Equation 1

Find the solution of the heat conduction problem

100uxx = ut, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = sin(2πx)− sin(5πx)

. . . . . . . . .

Solution 1. We identify α2 = 100 and L = 1. Then we need to expand u(x, 0) as

u(x, 0) =
∞∑
n=1

bn sin(nπx).

However, if we look at the form of u(x, 0), this is immediately accomplished by taking
b2 = 1, b5 = −1 and bn = 0 otherwise. Therefore

u(x, t) = u2(x, t)− u5(x, t) = e−400π
2t sin(2πx)− e−2500π2t sin(5πx).

Problem 2 Heat Equation 2

Find the solution of the heat conduction problem

uxx = 4ut, 0 < x < 2, t > 0

u(0, t) = u(2, t) = 0, t > 0

u(x, 0) = 2 sin(πx/2)− sin(πx) + 4 sin(2πx)

. . . . . . . . .

Solution 2. We identify α2 = 4 and L = 2. Then we need to expand u(x, 0) as

u(x, 0) =
∞∑
n=1

bn sin(nπx/2).

However, if we look at the form of u(x, 0), this is immediately accomplished by taking
b1 = 2, b2 = −1, b4 = 4 and bn = 0 otherwise. Therefore

u(x, t) = u1(x, t)−u2(x, t)+4u4(x, t) = e−π
2t sin(πx/2)−e−4π2t sin(πx)+4e−16π

2t sin(2πx).



Problem 3 2

Problem 3 Insulated Heat Equation Problem

Consider a uniform rod of length L with an initial temperature given by u(x, 0) =
sin(πx/L) with 0 ≤ x ≤ L. Assume that both ends of the bar are insulated (this is a
homogeneous Neumann boundary condition for t > 0).

(a) Find the temperature u(x, t). (Note: the initial condition u(x, 0) does not satisfy
the boundary conditions, which is fine since we are only asking the boundary
conditions to be satisfied for t > 0)

(b) What is the steady state temperature as t→∞?

(c) Let α2 = 1 and L = 40. Plot u vs. x for several values of t.

. . . . . . . . .

Solution 3.

(a) We need to determine the temperature initially in terms of a cosine series. This
means reflecting sin(πx/L) evenly and then extending periodically. In other
words, we’re really looking for the cosine series of | sin(πx/L))|. Using Euler-
Fourier, we obtain

an =
1

L

∫ L

−L
| sin(πx/L)| cos(nπx/L)dx =

2

L

∫ L

0

sin(πx/L) cos(nπx/L)dx.

Now in order to complete the last integral on the right, we can adopt several
strategies. The most obvious thing is to integrate by parts twice, and then com-
pare sides – however, that is a lot of work. A shorter strategy is to use the
addition angle formulas for sine to write:

sin(πx/L) cos(nπx/L) =
1

2
(sin((1 + n)πx/L) + sin((1− n)πx/L)).

With this in mind, the above integral becomes

an =
1

L

∫ L

0

(sin((1 + n)πx/L) + sin((1− n)πx/L))dx =
2

π

(
1 + (−1)n

1− n2

)
.

However, notice that in our derivation of this formula, we divided by 1− n, and
therefore the expression we obtained for an does not apply when n = 1. We must
treat this case separately! We calculate using the double angle formula

a1 =
2

L

∫ L

0

sin(πx/L) cos(πx/L)dx =
1

L

∫ L

0

sin(2πx/L)dx = − 1

2π
cos(2πx/L)|10 = 0.

We conclude that

u(x, 0) =
a0
2

+
∞∑
n=1

an cos(nπx/L) =
2

π
+
∞∑
n=2

2

π

(
1 + (−1)n

1− n2

)
cos(nπx/L).

MATH 309 HW # 6



Problem 4 3

This tells us that

u(x, t) =
2

π
+
∞∑
n=2

2

π

(
1 + (−1)n

1− n2

)
e−n

2π2α2t/L2

cos(nπx/L).

(b) As t→∞, the exponential terms die off, leaving only a0/2. Therefore the steady
state temperature is 2/π.

(c) Plot at several times is included in the figure below.

Problem 4 Another Insulated Heat Equation Problem

Consider a bar of length 40 cm whose initial temperatore is given by u(x, 0) = x(60−
x)/30. Suppose that α2 = 1/4 cm2/s and that both ends of the bar are insulated.

(a) Find the temperature u(x, t). (Note: the initial condition u(x, 0) does not satisfy
the boundary conditions, which is fine since we are only asking the boundary
conditions to be satisfied for t > 0)

(b) What is the steady state temperature as t→∞?

(c) Plot u vs. x for several values of t.
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(d) Determine how much time must elapse before the temperature at x = 40 comes
within 1 degrees C of its steady state value.

. . . . . . . . .

Solution 4.

(a) Again, we must extend u(x, 0) evenly and periodically in order to pick up its
cosine series. Then by the Euler-Fourier equation we have

an =
2

40

∫ 40

0

x(60− x)

30
cos(nπx/40)dx.

We can obtain the value explicitly by using integration by parts twice to get the
a′ns. (There are, of course, more clever ways to do things, but this works fine).
Doing so, we obtain

an =
160

3

(−1)n+1 − 3

n2π2
,

which works except for n = 0, for which we obtain a0 = 400/9. Therefore we see

u(x, 0) = 200/9 +
∞∑
n=1

160

3

(−1)n+1 − 3

n2π2
cos(nπx/40).

We conclude that

u(x, t) = 200/9 +
∞∑
n=1

160

3

(−1)n+1 − 3

n2π2
e−n

2π2t/6400 cos(nπx/40).

(b) Again, the exponential terms die off, so the steady state temperature is 200/9.

(c) Plot at several times is included in the figure below.
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Problem 5 Schrödinger Equation

In quantum mechanics, the position of a point particle in space is not certain – it’s
described by a probability distribution. The probability distribution of the position of
the particle is |ψ(x, t)|2, where ψ(x, t) is the wave function of the particle. (Note: the
wave function ψ(x, t) can be complex-valued!!). The one-dimensional, time-dependent
Schrödinger equation, describing the wave function ψ(x, t) of a particle of mass m
interacting with a potential v(x) is given by

i~ψt(x, t) = − ~2

2m
ψxx(x, t) + v(x)ψ(x, t)

where ~ is some universal constant. The potential v(x) can be imagined as a function
describing the particles interaction with whatever “stuff” is in the space surrounding
the particle, eg. walls, external forces, etc.

(a) Use separation of variables to replace this partial differential equation with a pair
of two ordinary differential equations

(b) If v(x) is a potential corresponding to an “infinite square well”:

v(x) =

{
0, −1 < x < 1
∞, |x| ≥ 1
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Then ψ(x, t) must be zero whenever |x| ≥ 1 and therefore ψ(x, t) is the wave
function of a particle trapped in a one-dimensional box! In other words, this
potential describes a particle surrounded by impermeable walls. In this case,
Schrödinger’s equation reduces to

i~ψt(x, t) = − ~2

2m
ψxx(x, t), −1 < x < 1, t > 0

ψ(−1, t) = ψ(1, t) = 0, t > 0

Suppose that initially the wave function is known to be

ψ(x, 0) =
3

5
sin(πx) +

4

5
sin(3πx).

Determine ψ(x, t) for all t > 0.

(c) Since |ψ(x, t)|2 is the probability distribution of the particle’s position at time t,
the probability that the particle is somewhere in the box between `1 and `2 is
given by

P(`1 ≤ pos ≤ `2) =

∫ `2

`1

|ψ(x, t)|2dx.

Show that the probability P(−1 ≤ pos ≤ 1) that the particle is between −1 and
1 is always 1 (in other words, the particle is always in the box!).

(d) What is the probability P(−1 ≤ pos ≤ 0) that the particle is in the first half of
the box at any given time?

. . . . . . . . .

Solution 5.

(a) We assume ψ(x, t) = F (x)G(t). Then inserting this into Schrödinger’s equation,
we obtain

i~F (x)G′(t) = − ~2

2m
F ′′(x)G(t) + v(x)F (x)G(t).

Now if we divide out by a G(t) and a F (x) we find

i~G′(t)/G(t) = − ~2

2m
F ′′(x)/F (x) + v(x).

The function on the left hand side is a function of t only. The function on the
right hand side is a function of x only. Therefore the only way that the above
equality can work is if both sides are equal to some constant E. Therefore

i~G′(t)/G(t) = E, − ~2

2m
F ′′(x)/F (x) + v(x) = E.

Simplifying, this gives us the system of two ordinary differential equations

i~G′(t) = EG(t).
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− ~2

2m
F ′′(x) + v(x)F (x) = EF (x).

The latter equation of these two equations is known as the time-independent
Schrödinger equation.

(b) This is just like the heat equation, with α2 = i ~
2m

and L = 1. Thus given the
initial condition, the solution that we are looking for is

ψ(x, t) =
3

5
e−i

~π2
2m

t sin(πx) +
4

5
e−i

9~π2
2m

t sin(3πx).

(c) Note that

ψ(x, t)∗ =
3

5
ei

~π2
2m

t sin(πx) +
4

5
ei

9~π2
2m

t sin(3πx),

and therefore

|ψ(x, t)|2 = ψ(x, t)ψ(x, t)∗ =
9

25
sin2(πx)+

16

25
sin2(3πx)+

12

25

(
ei

8~π2
2m

t + ei
−8~π2
2m

t
)

sin(πx) sin(3πx).

If we now integrate over the domain of the box (from −1 to 1), orthogonality tells
us the integral of sin(πx) sin(3πx) dies off! Therefore we obtain:∫ 1

−1
|ψ(x, t)|2dx =

9

25

∫ 1

−1
sin2(πx)dx+

16

25

∫ 1

−1
sin2(3πx)dx =

9

25
+

16

25
= 1.

This shows that the probability that the particle is in the box at any time t is 1
– e.g. it is a certainty.

(d) We can use the work from above to write∫ 1

−1
|ψ(x, t)2dx =

9

25

∫ 0

−1
sin2(πx)dx+

16

25

∫ 0

−1
sin2(3πx)dx+

12

25

(
ei

8~π2
2m

t + ei
−8~π2
2m

t
)∫ 0

−1
sin(πx) sin(3πx)dx.

However, since we’re not integrating over the full period, we cannot appeal to or-
thogonality to say that the cross-term dies anymore. However, direct calculation
shows that it does indeed die anyway. The sum of the first two integrals is easily
calculated to be 1/2. Therefore the probability that the particle is in the first
half of the box at any time t is exactly 1/2. In other words – at any time the
particle is equally likely to be in either side of the box.
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