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Today!

Plan for today:
Basic Theory
Method of Undetermined Coefficients
Method of Variation of Parameters

Next time:
More Nonhomogeneous Differential Equations
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Back in Math 307...

Back in Math 307, we considered differential equations of
the form

y ′′ + by ′ + cy = f (x).

To find the general solution, we found a particular
solution and added the general solution of the
corresponding homogeneous equation.

y = yp + yh

The same idea works here!
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General Solution

Proposition

Suppose that ~y1, ~y2 are solutions of the nonhomogeneous
system

~y ′ = A(x)~y + ~b(x).

Then ~y1 − ~y2 is a solution of the corresponding homogeneous
equation

~y ′h = A(x)~yh.

in other words, any two solutions to nonhomogeneous
differ by a solution of homogeneous!
this characterizes solutions to nonhomogeneous
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General Solution

Proposition

If ~yp is any single solution to the nonhomogeneous equation

~y ′ = A(x)~y + ~b(x).

Then the general solution to the nonhomogeneous equations is

~y = ~yp + ~yh

where ~yh is the general solution of the associated
homogeneous equation

~y ′h = A(x)~yh.

yp is called a particular solution (not unique!)
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Back in Math 307

for a second-order equation

y ′′ + 2y ′ + y = e3x

we’d propose a particular solution of the form yp = ce3x

then we’d determine c by inserting our guess into the
differential equation:

9ce3x + 6ce3x + ce3x = e3x .

9c + 6c + c = 1 ⇒ c = 1/16.

this shows yp = (1/16)e3x is a solution
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Method of Undetermined Coefficients

To find a particular solution of

~y ′ = A~y + erx~v , (A, ~v , r all constant)

if r is not an eigenvalue of A, we propose a solution of the
form

~yp = ~cerx

plugging this into the equation, we get:

r~cerx = A~cerx + erx~v .

(A− rI)~c = −~v ⇒ ~c = −(A− rI)−1~v .

then ~yp = ~cerx is a particular solution!
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Method of Undetermined Coefficients

More generally, to find a particular solution of

~y ′ = A~y + erx (~v1x + ~v0), (A, ~v , r all constant)

if r is not an eigenvalue of A, we propose a solution of the
form

~yp = (~c1x + ~c0)erx

plugging this into the equation, we get:

r~c1xerx + (~c1 + r~c0)erx = A~c1xerx + A~c0erx + erx~v1x + erx~v0.

(A− rI)~c1 = −~v1 ⇒ ~c1 = −(A− rI)−1~v1.

(A− rI)~c0 = −~v1 + ~c1 ⇒ ~c0 = −(A− rI)−1(~v1 − ~c1).

then ~yp = (~c1x + ~c0)erx is a particular solution!
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Example 1

Question
Find a particular solution to the differential equation

~y ′ = A~y +

(
2e2x

e2x

)
, A =

(
1 2
2 1

)
.

we propose a solution of the form ~yp = ~ce2x

then

~c = −(A− 2I)−1 = −
(

1/3 2/3
2/3 1/3

)(
2
1

)
=

(
−4/3
−5/3

)
thus ~yp =

(−4/3
−5/3

)
e2x is a particular solution
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Example 2

Question
Find a particular solution to the differential equation

~y ′ = A~y +

(
2e2x

e2x + ex

)
, A =

(
1 2
2 1

)
.

to solve this equation, we split the equation into two new
equations:

~y ′1 = A~y1 +

(
2e2x

e2x

)
, ~y ′2 = A~y2 +

(
1
ex

)
if ~yp1 and ~yp2 are particular solutions of each of these, then
~yp = ~yp1 + ~yp2 is a solution of the original!
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Example 2 Continued

Question
Find a particular solution to the differential equation

~y ′ = A~y +

(
2e2x

e2x + ex

)
, A =

(
1 2
2 1

)
.

from Example 1, ~yp1 =
(−4/3
−5/3

)
e2x

for ~yp2, we propose ~yp2 = ~c2ex . then

~c2 = −(A− I)−1
(

0
1

)
=

(
−1/2

0

)
.

therefore
~yp =

(
−4/3
−5/3

)
e2x +

(
−1/2

0

)
ex .
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Example 3

Question
Find a particular solution to the differential equation

~y ′ = A~y +

(
xex

ex

)
, A =

(
1 2
2 1

)
.

we propose a solution of the form ~yp = (~c1x + ~c0)ex

then

~c1 = −(A−I)−1
(

1
0

)
=

(
0
−1/2

)
, ~c0 = −(A−I)−1

((
0
1

)
−
(

0
−1/2

))
=

(
−3/4

0

)
.

therefore we have the particular solution

~yp =

((
0
−1/2

)
x +

(
−3/4

0

))
ex =

(
−3/4
−x/2

)
ex
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Example 4

Question
Find a particular solution to the differential equation

~y ′ = A~y +

(
e−x

0

)
, A =

(
1 2
2 1

)
.

we propose a solution of the form ~yp = ~ce−x . Then

~c = −(A + I)−1
(

1
0

)
= ?????.

the matrix A + I is singular, so no inverse!
this is because −1 is an eigenvalue of A – our method
doesn’t work for this!
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Math 307

back in Math 307, you may have been exposed to a
method called variation of parameters
basic idea: to solve

y ′ = a(x)y + b(x),

propose a solution of the form yp = v(x)yh, where yh is a
solution of homogeneous equation

y ′h = a(x)yh

then v ′(x) = b(x)/yh(x), and so

yp = yh(x)

∫
b(x)

yh(x)
dx .

we generalize this here!
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The Method’s Derivation

Consider the nonhomogeneous equation

~y ′ = A(x)~y + ~b(x).

The associated homogeneous equation is:

~y ′h = A(x)~yh.

Let Φ(x) be a fundamental matrix for the homogeneous
equation
Propose ~yp = Φ(x)~v(x)

How can we find v(x)?
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The Method’s Derivation (Continued)

We calculate:

~y ′p = (Φ(x)~v(x))′ = Φ′(x)~v(x) + Φ(x)~v ′(x)

Since Φ(x) is a fundamental matrix, Φ′(x) = A(x)Φ(x), so:

~y ′p = A(x)Φ(x)~v(x) + Φ(x)~v ′(x)

Moreover

~y ′p = A(x)~yp + ~b(x) = A(x)Φ(x)~v(x) + ~b(x)

therefore

A(x)Φ(x)~v(x) + ~b(x) = A(x)Φ(x)~v(x) + Φ(x)~v ′(x).
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The Method’s Derivation (Continued)

Simplifying:
~b(x) = Φ(x)~v ′(x).

Thus
~v ′(x) = Φ(x)−1~b(x).

Therefore
~v(x) =

∫
Φ(x)−1~b(x)dx .

and thus

~yp(x) = Φ(x)~v(x) = Φ(x)

∫
Φ(x)−1~b(x)dx .
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Method Summary

to find a particular solution of

~y ′ = A(x)~y(x) + ~b(x),

find a fundamental matrix Φ(x) for ~y ′h = A(x)~yh(x)

then we have

~yp = Φ(x)

∫
Φ(x)−1~b(x)dx .

DOWNSIDE: this calculation can take a while...

W.R. Casper Math 309 Lecture 11



Example 1

Question
Find a particular solution of the differential equation

~y ′ = A~y +

(
− cos(x)

sin(x)

)
, A =

(
2 −5
1 −2

)
.

We first calculate a fundamental matrix for ~y ′ = A~y .
The eigenvalues of A are ±i
A fundamental matrix is therefore Φ(x) = exp(Ax), with

exp(Ax) = cos(x)I+sin(x)A =

(
cos(x) + 2 sin(x) −5 sin(x)

sin(x) cos(x)− 2 sin(x)

)
.
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y +

(
− cos(x)

sin(x)

)
, A =

(
2 −5
1 −2

)
.

Note: since exp(Ax)−1 = exp(−Ax), we have
Φ(x)−1 = Φ(−x) and therefore

Φ(x)−1
(− cos(x)

sin(x)

)
=

(
cos(x) − 2 sin(x) 5 sin(x)

− sin(x) cos(x) + 2 sin(x)

)(− cos(x)

sin(x)

)

=

(− cos2(x) + 2 sin(x) cos(x) + 5 sin2(x)

2 sin(x) cos(x) + 2 sin2(x)

)
=

(−1 + 6 sin2(x) + 2 sin(x) cos(x)

2 sin(x) cos(x) + 2 sin2(x)

)
.
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y +

(
− cos(x)

sin(x)

)
, A =

(
2 −5
1 −2

)
.

Integrating, we obtain∫
Φ(x)−1

(
− cos(x)

sin(x)

)
dx =

∫ (−1 + 6 sin2(x) + 2 sin(x) cos(x)

2 sin(x) cos(x) + 2 sin2(x)

)
dx

=

(
2x − (3/2) sin(2x) + sin2(x)

sin2(x) + x − (1/2) sin(2x)

)
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y +

(
− cos(x)

sin(x)

)
, A =

(
2 −5
1 −2

)
.

Finally, we find

~yp = Φ(x)

∫
Φ(x)−1

(− cos(x)

sin(x)

)
dx

=

(
cos(x) + 2 sin(x) −5 sin(x)

sin(x) cos(x) − 2 sin(x)

)(2x − (3/2) sin(2x) + sin2(x)

sin2(x) + x − (1/2) sin(2x)

)

=

(2x cos(x) − x sin(x) − 3 sin(x)

x cos(x) − sin(x)

)

the last step resulting from a massive fireball of trig
identities
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summary!

what we did today:
method of undetermined coefficients
method of variation of parameters

plan for next time:
more nonhomogeneous differential equations
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