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Plan for today:
Diagonalization Method

Next time:
Fourier Series
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Solving Nonhomogeneous Equations

TWO METHODS SO FAR:
(1) Method of Undetermined Coefficients
(2) Method of Variation of Parameters

What if undetermined coefficients doesn’t work?
Variation of parameters ... but it takes so long!
Alternative method:

(3) Method of Diagonalization

W.R. Casper Math 309 Lecture 12



Diagonalization Method
The Method
Examples

Method of Diagonalization

to find a solution to the differential equation

~y ′ = A~y + ~b(x)

use the following steps:
STEP 1: find P so that P−1AP = N is in Jordan normal form
STEP 2: substitute ~y = P~z, so the equation becomes:

(P~z)′ = AP~z + ~b(x)

STEP 3: multiply by P−1, obtaining

~z ′ = N~z + P~b(x).

STEP 4: solve for ~z, and get final answer ~y = P~z
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Example 1

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
2 1

)
, ~b(x) =

(
e−x

0

)
.

−1 is an eigenvalue of A, so undetermined coefficients
doesn’t work
don’t want variation of parameters – too much work!!!
instead try diagonalization!
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
2 1

)
, ~b(x) =

(
e−x

0

)
.

usual calculation shows P−1AP = N:

P =

(
1 1
−1 1

)
, N =

(
−1 0
0 3

)
, P−1 =

(
1/2 −1/2
1/2 1/2

)
sub ~y = P~z:

~z ′ =
(

−1 0
0 3

)
~z + P−1~b(x)
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
2 1

)
, ~b(x) =

(
e−x

0

)
.

simplifies:

~z ′ =
(

−1 0
0 3

)
~z +

(
e−x/2
−e−x/2

)
.

Write ~z =
(z1

z2

)
. Then the above says:

z ′1 = −z1 +
1
2

e−x , z ′2 = 3z2 −
1
2

e−x .

These are both first-order ODEs! Super easy to solve!!
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Example 1 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
2 1

)
, ~b(x) =

(
e−x

0

)
.

we can use integrating factor method ...
then we obtain solutions

z1 =
1
2

xe−x , z2 =
1
8

e−x .

therefore ~z =
(xe−x/2

e−x/8

)
and finally

~y = P~z =

(
1 1
−1 1

)
~z =

(
xe−x/2 + e−x/8
−xe−x/2 + e−x/8

)
.
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Example 2

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
0 1

)
, ~b(x) =

(
ex

ex

)
.

again 1 is an eigenvalue for A, so undetermined
coefficients is no good
variation of parameters is still sooo much work
instead, try diagonalization!
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Example 2 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
0 1

)
, ~b(x) =

(
ex

ex

)
.

usual calculation gives P−1AP = N:

P =

(
1 0
0 1/2

)
, N =

(
1 1
0 1

)
, P−1 =

(
1 0
0 2

)
.

substitute ~y = P~z:

~z ′ =
(

1 1
0 1

)
~z + P−1~b(x)
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Example 2 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
0 1

)
, ~b(x) =

(
ex

ex

)
.

simplifies to

~z ′ =
(

1 1
0 1

)
~z +

(
ex

2ex

)
write ~z =

(z1
z2

)
. Then

z ′1 = z1 + z2 + ex , z ′2 = z2 + 2ex .

the second equation above is ordinary first order linear,
easy to solve!!
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Example 2 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
0 1

)
, ~b(x) =

(
ex

ex

)
.

using integrating factor, get z2 = 2xex

now substituting z2 into equation for z1, we find

z ′1 = z1 + 2xex + ex .

this is now ordinary first order linear, easy to solve!!
integrating factor gives z1 = (x2 + x)ex
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Example 2 (Continued)

Question
Find a particular solution of the differential equation

~y ′ = A~y + ~b(x), A =

(
1 2
0 1

)
, ~b(x) =

(
ex

ex

)
.

this means that

~z =

(
z1

z2

)
=

(
2xex

x2ex + xex

)
.

therefore we have that

~y = P~z =

(
1 0
0 1/2

)(
2xex

x2ex + xex

)
=

(
2xex

x2ex/2 + xex/2

)
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summary!

what we did today:
diagonalization method

plan for next time:
Fourier series
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