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The Dot Product for Rn

The dot product of two vectors ~u, ~v is given by

~u·~v = ~uT~v = u1v1+u2v2+· · ·+unvn, for ~u =


u1
u2
...

un

 ~v =


v1
v2
...

vn


For example in R2:(

2
3

)
·
(

4,2
=

)
2 · 4 + 3 · 2 = 14.
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Properties of the Dot Product

The dot product has several important properties.
Symmetry

~u · ~v = ~v · ~u

Linearity
(c~u) · ~v = c(~u · ~v) and (~u + ~w) · ~v = ~u · ~v + ~w · ~v

Positive
Definiteness

~u · ~u ≥ 0

with equality if and only if ~u = ~0.

Definition
A multiplication operation which takes two vectors and returns a
scalar and satisfies the above three properties is called a inner
product.
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Inner Product Space

Definition
A vector space equipped with an inner product (eg. Rn) is
called a inner product space.

The inner product of two vectors ~u, ~v , such as the dot
product for Rn, is denoted by 〈~u, ~v〉.
Inner products measure angles between vectors and sizes
of vectors

Definition

The magnitude of a vector is ‖~v‖ =
√
〈~v , ~v〉. The angle θ

between two vectors ~u, ~v is determined by

cos(θ) =
〈~u, ~v〉
‖~u‖‖~v‖

.
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Pairwise othogonal

Let V be an inner product space, such as Rn.

Definition

Two nonzero vectors ~u, ~v are called orthogonal if ~u · ~v = 0
(equivalently if the angle between them is 90 degrees). A
collection of nonzero vectors {~v1, ~v2, . . . , ~vm} in V is called
pairwise orthogonal if ~vi · ~vj = 0 for all 1 ≤ i , j ≤ m with i 6= j .

Example
The collection of vectors

 1
0
0

 ,

 0
1
0

 ,

 0
0
1


is pairwise orthogonal.
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Pairwise orthogonal

Example
The collection of vectors

 1
0
1

 ,

 0
1
0

 ,

 −1
0
1


is pairwise orthogonal.

Example
The collection of vectors{(

1
2

)
,

(
−2
1

)
,

(
1
1

)}
is not pairwise orthogonal.

W.R. Casper Math 309 Lecture 13



Inner Product Spaces
Hilbert Space

Inner Products
Orgonality and Linear Independence

Linear Independence

Proposition
A collection of pairwise orthogonal vectors must be linearly
independent.

Definition
A orthogonal basis for V is a collection of vectors which are
pairwise orthogonal and span V . An orthogonal basis is called
orthonormal if all of the elements are also unit vectors.
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Linear Independence

Example
The collection of vectors{(

1
1

)
,

(
−1
1

)}
is an orthogonal basis for R2. The collection of vectors{(

1/
√

2
1/
√

2

)
,

(−1/
√

2
1/
√

2

)}

is an orthonormal basis for R2.
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Hilbert Space

Definition
A Hilbert space is an inner product space V (ie. a vector
space with an inner product) satisfying the additional property
that if ~v1, ~v2, ~v3, . . . is a sequence of vectors in V and the sum∑∞

n=1 ‖~vn‖ <∞, then the sum
∑∞

n=1 vn converges to a vector in
V .

In a Hilbert space, we can add up infinitely many vectors!
Rn is an example of a Hilbert space
We will see that the collection PT of all square integrable
functions with period T is also a Hilbert space
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Our Favorite Hilbert Space

In this class, our favorite Hilbert space will be the collection PT
of all functions f : R→ R satisfying the follwing two properties
(1) f (x + T ) = f (x) for all x (ie. f is periodic with period T )

(2) the integral
∫ T

0 f (x)2dx exists and is finite (ie. f is square
integrable on the interval [0,T ]).

Example

The functions cos(x), cos(2x), cos(3x) and
sin(x), sin(2x), sin(3x) are 2π periodic and square-integrable
on [0,2π], and therefore belong to PT .

Example

The function tan(x) is 2π-periodic, but doesn’t belong to PT
because it is not square-integrable on [0,2π].

W.R. Casper Math 309 Lecture 13



Inner Product Spaces
Hilbert Space

Basic Definition
Orthogonal Basis

Inner product on PT

In PT , we treat functions as vectors!
The inner product of two funcions f (x),g(x) in PT is

〈f ,g〉 =
∫ T

0
f (x)g(x)dx .
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Basis for a Hilbert Space

Let V be a Hilbert space.

Definition
A Hilbert space basis for V is a (possibly infinite) collection of
vectors ~v1, ~v2, ~v3, . . . which are linearly independent and which
satisfy the property that any vector ~v in V may be written as a
(possibly infinite) linear combination

~v = c1~v1 + c2~v2 + · · · =
∑

j

cj~vj .

A Hilbert space basis is different from a vector space basis
when V is in finite
If V is finite-dimensional, the two notions of a basis are the
same
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Orthogonal Basis for PT

Theorem
The collection{

sin
(

2πmx
T

)
, cos

(
2πnx

T

)
, cos

(
4πx
T

)
: m=1,2,3,...

n=0,1,2,...

}
.

is an orthogonal Hilbert space basis for PT .

In particular∫ T

0
sin(2πmx/T ) cos(2πnx/T )dx = 0 for all m,n∫ T

0
cos(2πmx/T ) cos(2πnx/T )dx = 0 if m 6= n and T/2 otherwise∫ T

0
sin(2πmx/T ) sin(2πnx/T )dx = 0 if m 6= n and T/2 otherwise.

W.R. Casper Math 309 Lecture 13



Inner Product Spaces
Hilbert Space

Basic Definition
Orthogonal Basis

summary!

what we did today:
Hilbert space

plan for next time:
Fourier series
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