Math 309 Lecture 13

Hilbert Space

W.R. Casper

Department of Mathematics University of Washington

May 7, 2017

Plan for today:

- Inner Products and Orthogonality
- Hilbert Space

Next time:

Fourier Series

Inner Product Spaces

- Inner Products
- Orgonality and Linear Independence

2 Hilbert Space

- Basic Definition
- Orthogonal Basis

The Dot Product for \mathbb{R}^n

The dot product of two vectors \vec{u}, \vec{v} is given by

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n, \text{ for } \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

For example in \mathbb{R}^2 :

$$\binom{2}{3} \cdot \binom{4,2}{=} 2 \cdot 4 + 3 \cdot 2 = 14.$$

Properties of the Dot Product

The dot product has several important properties.

$$\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}$$

Linearity

$$(c\vec{u})\cdot\vec{v}=c(\vec{u}\cdot\vec{v})$$
 and $(\vec{u}+\vec{w})\cdot\vec{v}=\vec{u}\cdot\vec{v}+\vec{w}\cdot\vec{v}$

Positive Definiteness

 $\vec{u} \cdot \vec{u} \ge 0$

with equality if and only if $\vec{u} = \vec{0}$.

Definition

A multiplication operation which takes two vectors and returns a scalar and satisfies the above three properties is called a **inner product**.

Inner Product Space

Definition

A vector space equipped with an inner product (eg. \mathbb{R}^n) is called a **inner product space**.

- The inner product of two vectors *u*, *v*, such as the dot product for ℝⁿ, is denoted by ⟨*u*, *v*⟩.
- Inner products measure angles between vectors and sizes of vectors

Definition

The **magnitude** of a vector is $\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$. The **angle** θ between two vectors \vec{u}, \vec{v} is determined by

$$\cos(heta) = rac{\langle ec{u}, ec{v}
angle}{\|ec{u}\| \|ec{v}\|}.$$

Pairwise othogonal

Let *V* be an inner product space, such as \mathbb{R}^n .

Definition

Two nonzero vectors \vec{u}, \vec{v} are called **orthogonal** if $\vec{u} \cdot \vec{v} = 0$ (equivalently if the angle between them is 90 degrees). A collection of nonzero vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ in *V* is called **pairwise orthogonal** if $\vec{v}_i \cdot \vec{v}_j = 0$ for all $1 \le i, j \le m$ with $i \ne j$.

Example

The collection of vectors

$$\left\{ \left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}0\\1\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\end{array}\right) \right\}$$

is pairwise orthogonal.

Inner Products Orgonality and Linear Independence

Pairwise orthogonal

Example

The collection of vectors

$$\left\{ \left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}0\\1\\0\end{array}\right), \left(\begin{array}{c}-1\\0\\1\end{array}\right) \right\}$$

is pairwise orthogonal.

Example

The collection of vectors

$$\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

is not pairwise orthogonal.

Inner Products Orgonality and Linear Independence

Linear Independence

Proposition

A collection of pairwise orthogonal vectors must be linearly independent.

Definition

A **orthogonal basis** for V is a collection of vectors which are pairwise orthogonal and span V. An orthogonal basis is called **orthonormal** if all of the elements are also unit vectors.

Inner Products Orgonality and Linear Independence

Linear Independence

Example

The collection of vectors

$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$$

is an orthogonal basis for \mathbb{R}^2 . The collection of vectors

$$\left\{ \binom{1/\sqrt{2}}{1/\sqrt{2}}, \binom{-1/\sqrt{2}}{1/\sqrt{2}} \right\}$$

is an orthonormal basis for \mathbb{R}^2 .

Hilbert Space

Definition

A **Hilbert space** is an inner product space *V* (ie. a vector space with an inner product) satisfying the additional property that if $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots$ is a sequence of vectors in *V* and the sum $\sum_{n=1}^{\infty} \|\vec{v}_n\| < \infty$, then the sum $\sum_{n=1}^{\infty} v_n$ converges to a vector in *V*.

- In a Hilbert space, we can add up infinitely many vectors!
- \mathbb{R}^n is an example of a Hilbert space
- We will see that the collection P_T of all square integrable functions with period T is also a Hilbert space

Our Favorite Hilbert Space

In this class, our favorite Hilbert space will be the collection \mathcal{P}_T of all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the following two properties

- (1) f(x + T) = f(x) for all x (ie. f is periodic with period T)
- (2) the integral $\int_0^T f(x)^2 dx$ exists and is finite (ie. *f* is square integrable on the interval [0, *T*]).

Example

The functions $\cos(x)$, $\cos(2x)$, $\cos(3x)$ and $\sin(x)$, $\sin(2x)$, $\sin(3x)$ are 2π periodic and square-integrable on $[0, 2\pi]$, and therefore belong to $\mathcal{P}_{\mathcal{T}}$.

Example

The function tan(x) is 2π -periodic, but doesn't belong to $\mathcal{P}_{\mathcal{T}}$ because it is not square-integrable on $[0, 2\pi]$.

Inner product on $\mathcal{P}_{\mathcal{T}}$

- In \mathcal{P}_T , we treat functions as vectors!
- The inner product of two functions f(x), g(x) in \mathcal{P}_T is

$$\langle f,g\rangle = \int_0^T f(x)g(x)dx.$$

Basic Definition Orthogonal Basis

Basis for a Hilbert Space

Let V be a Hilbert space.

Definition

A **Hilbert space basis** for *V* is a (possibly infinite) collection of vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots$ which are linearly independent and which satisfy the property that any vector \vec{v} in *V* may be written as a (possibly infinite) linear combination

$$\vec{v}=c_1\vec{v}_1+c_2\vec{v}_2+\cdots=\sum_jc_j\vec{v}_j.$$

- A Hilbert space basis is different from a vector space basis when *V* is in finite
- If *V* is finite-dimensional, the two notions of a basis are the same

Basic Definition Orthogonal Basis

Orthogonal Basis for $\mathcal{P}_{\mathcal{T}}$

Theorem

The collection

$$\left\{\sin\left(\frac{2\pi mx}{T}\right),\cos\left(\frac{2\pi nx}{T}\right),\cos\left(\frac{4\pi x}{T}\right):\underset{n=0,1,2,\ldots}{\overset{m=1,2,3,\ldots}{T}}\right\}.$$

is an orthogonal Hilbert space basis for $\mathcal{P}_{\mathcal{T}}.$

In particular

$$\int_{0}^{T} \sin(2\pi mx/T) \cos(2\pi nx/T) dx = 0 \text{ for all } m, n$$

$$\int_{0}^{T} \cos(2\pi mx/T) \cos(2\pi nx/T) dx = 0 \text{ if } m \neq n \text{ and } T/2 \text{ otherwise}$$

$$\int_{0}^{T} \sin(2\pi mx/T) \sin(2\pi nx/T) dx = 0 \text{ if } m \neq n \text{ and } T/2 \text{ otherwise}$$

summary!

what we did today:

- Hilbert space
- plan for next time:
 - Fourier series