[Inner Product Spaces](#page-3-0) [Hilbert Space](#page-10-0)

Math 309 Lecture 13 Hilbert Space

W.R. Casper

Department of Mathematics University of Washington

May 7, 2017

Plan for today:

- **Inner Products and Orthogonality**
- **Hilbert Space**

Next time:

• Fourier Series

1 [Inner Product Spaces](#page-3-0)

- [Inner Products](#page-3-0)
- [Orgonality and Linear Independence](#page-6-0)

2 [Hilbert Space](#page-10-0)

- **[Basic Definition](#page-10-0)**
- **[Orthogonal Basis](#page-13-0)**

The Dot Product for \mathbb{R}^n

The dot product of two vectors \vec{u} , \vec{v} is given by

$$
\vec{u}\cdot\vec{v} = \vec{u}^T\vec{v} = u_1v_1 + u_2v_2 + \cdots + u_nv_n, \text{ for } \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}
$$

For example in \mathbb{R}^2 :

$$
\binom{2}{3} \cdot \binom{4,2}{=} 2 \cdot 4 + 3 \cdot 2 = 14.
$$

Properties of the Dot Product

The dot product has several important properties. Symmetry

$$
\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}
$$

Linearity

$$
(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})
$$
 and $(\vec{u} + \vec{w}) \cdot \vec{v} = \vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v}$

Positive Definiteness

$$
\vec{u}\cdot\vec{u}\geq 0
$$

with equality if and only if $\vec{u} = \vec{0}$.

Definition

A multiplication operation which takes two vectors and returns a scalar and satisfies the above three properties is called a **inner product**.

Inner Product Space

Definition

A vector space equipped with an inner product (eg. \mathbb{R}^n) is called a **inner product space**.

- The inner product of two vectors \vec{u} , \vec{v} , such as the dot product for \mathbb{R}^n , is denoted by $\langle \vec{u}, \vec{v} \rangle$.
- Inner products measure *angles between vectors* and *sizes of vectors*

Definition

The **magnitude** of a vector is $\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}.$ The <code>angle</code> θ between two vectors \vec{u} , \vec{v} is determined by

$$
\cos(\theta) = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}.
$$

Pairwise othogonal

Let *V* be an inner product space, such as \mathbb{R}^n .

Definition

Two nonzero vectors \vec{u} , \vec{v} are called **orthogonal** if $\vec{u} \cdot \vec{v} = 0$ (equivalently if the angle between them is 90 degrees). A collection of nonzero vectors $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m\}$ in V is called \bm{p} airwise orthogonal if $\vec{v}_i\cdot\vec{v}_j=0$ for all 1 \leq *i, j* \leq *m* with *i* \neq *j*.

Example

The collection of vectors

$$
\left\{\left(\begin{array}{c}1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c}0 \\ 1 \\ 0 \end{array}\right), \left(\begin{array}{c}0 \\ 0 \\ 1 \end{array}\right) \right\}
$$

is pairwise orthogonal.

[Inner Products](#page-3-0) **[Orgonality and Linear Independence](#page-6-0)**

Pairwise orthogonal

Example

The collection of vectors

$$
\left\{\left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right), \left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right), \left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}
$$

is pairwise orthogonal.

Example

The collection of vectors

$$
\left\{\binom{1}{2},\binom{-2}{1},\binom{1}{1}\right\}
$$

is *not* pairwise orthogonal.

[Inner Product Spaces](#page-3-0) [Hilbert Space](#page-10-0)

[Inner Products](#page-3-0) [Orgonality and Linear Independence](#page-6-0)

Linear Independence

Proposition

A collection of pairwise orthogonal vectors must be linearly independent.

Definition

A **orthogonal basis** for *V* is a collection of vectors which are pairwise orthogonal and span *V*. An orthogonal basis is called **orthonormal** if all of the elements are also unit vectors.

Linear Independence

Example

The collection of vectors

$$
\left\{\binom{1}{1},\binom{-1}{1}\right\}
$$

is an orthogonal basis for \mathbb{R}^2 . The collection of vectors

$$
\left\{ {1/\sqrt{2} \choose 1/\sqrt{2}}, { -1/\sqrt{2} \choose 1/\sqrt{2}} \right\}
$$

is an orthonormal basis for $\mathbb{R}^2.$

Hilbert Space

Definition

A **Hilbert space** is an inner product space *V* (ie. a vector space with an inner product) satisfying the additional property that if $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots$ is a sequence of vectors in V and the sum $\sum_{n=1}^{\infty}$ $_{n=1}^{\infty}\left\| \vec{v}_n \right\| < \infty$, then the sum $\sum_{n=1}^{\infty}$ v_n converges to a vector in *V*.

- In a Hilbert space, we can add up infinitely many vectors!
- \mathbb{R}^n is an example of a Hilbert space
- We will see that the collection $\mathcal{P}_\mathcal{T}$ of all square integrable functions with period *T* is also a Hilbert space

Our Favorite Hilbert Space

In this class, our favorite Hilbert space will be the collection $\mathcal{P}_{\mathcal{T}}$ of all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the follwing two properties

(1) $f(x+T) = f(x)$ for all x (ie. *f* is periodic with period *T*)

(2) the integral $\int_0^T f(x)^2 dx$ exists and is finite (ie. *f* is square integrable on the interval [0, *T*]).

Example

The functions $cos(x)$, $cos(2x)$, $cos(3x)$ and $sin(x)$, $sin(2x)$, $sin(3x)$ are 2π periodic and square-integrable on $[0, 2\pi]$, and therefore belong to \mathcal{P}_τ .

Example

The function tan(x) is 2π -periodic, but doesn't belong to \mathcal{P}_T because it is not square-integrable on $[0, 2\pi]$.

Inner product on P*^T*

- \bullet In $\mathcal{P}_\mathcal{T}$, we treat functions as vectors!
- The inner product of two funcions $f(x)$, $g(x)$ in \mathcal{P}_T is

$$
\langle f,g\rangle=\int_0^T f(x)g(x)dx.
$$

Basis for a Hilbert Space

Let *V* be a Hilbert space.

Definition

A **Hilbert space basis** for *V* is a (possibly infinite) collection of vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , ... which are linearly independent and which satisfy the property that any vector \vec{v} in V may be written as a (possibly infinite) linear combination

$$
\vec{v}=c_1\vec{v}_1+c_2\vec{v}_2+\cdots=\sum_jc_j\vec{v}_j.
$$

- A Hilbert space basis is different from a vector space basis when *V* is in finite
- **If** *V* is finite-dimensional, the two notions of a basis are the same

[Inner Product Spaces](#page-3-0) [Hilbert Space](#page-10-0) [Basic Definition](#page-10-0) [Orthogonal Basis](#page-13-0)

Orthogonal Basis for P*^T*

Theorem

The collection

$$
\left\{\sin\left(\frac{2\pi mx}{T}\right),\cos\left(\frac{2\pi nx}{T}\right),\cos\left(\frac{4\pi x}{T}\right):\stackrel{m=1,2,3,...}{\longrightarrow}.\right\}.
$$

is an orthogonal Hilbert space basis for \mathcal{P}_T .

• In particular

$$
\int_0^T \sin(2\pi mx/T) \cos(2\pi nx/T) dx = 0 \text{ for all } m, n
$$

$$
\int_0^T \cos(2\pi mx/T) \cos(2\pi nx/T) dx = 0 \text{ if } m \neq n \text{ and } T/2 \text{ otherwise}
$$

$$
\int_0^T \sin(2\pi mx/T) \sin(2\pi nx/T) dx = 0 \text{ if } m \neq n \text{ and } T/2 \text{ otherwise.}
$$

summary!

what we did today:

- **•** Hilbert space
- plan for next time:
	- **•** Fourier series