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Periodic Functions

Recall that PT is the Hilbert space of functions f : R→ R
satisfying the two properties
(1) f (x + T ) = f (x) for all x (ie. f is periodic with period T )

(2) the integral
∫ T

0 f (x)2dx exists and is finite (ie. f is square
integrable on the interval [0,T ]).

Given a function f (x) in PT , we can use the Euler-Fourier
formulas to express (for L = T/2)

f (x) =
∞∑

n=0

an cos
(nπx

L

)
+
∞∑

m=1

bm sin
(mπx

L

)
,
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Euler-Fourier Formulas

where here a0 = 1
2L

∫ L
−L f (x)dx and for n > 0

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx .

These are the Euler-Fourier Formulas.
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Meaning of Convergence?

What does the expression

f (x) =
∞∑

n=0

an cos
(nπx

L

)
+
∞∑

m=1

bm sin
(mπx

L

)
actually mean?
The appearance of∞ means we are taking a limit, so the
above is a statement about convergence.
In other words, we’re looking at the partial Fourier sums

SN(x) =
N∑

n=0

an cos
(nπx

L

)
+

N∑
m=1

bm sin
(mπx

L

)
,

and asking about what happens as we choose N bigger
and bigger ie.

lim
N→∞

SN(x).
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Convergence in What Sense?

Whenever you see a statement about convergence,
immediately ask

convergence in what sense?
There are many types of convergence, such as:
(1) uniform convergence
(2) pointwise convergence
(3) L2-convergence (ie. Hilbert space norm convergence)

pointwise convergence means for every fixed value of x ,
SN(x)→ f (x)
uniform convergence is stronger: it implies pointwise
convergence
L2-convergence doesn’t quite imply pointwise convergence
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Hilbert Space Norm Convergence

We derived the Fourier coefficients using Hilbert space
inner products, so we’re only guaranteed L2-convergence
This means that

lim
N→∞

∫ L

−L
|SN(x)− f (x)|2dx → 0

In practice, this means that SN(x) converges pointwise to
f (x) most places
Technically everywhere but a set of measure zero, such
as finitely many points
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Piecewise Continuity

If we also assume f (x) is sufficiently nice, we can get a
pointwise convergence result!

Definition
We call a periodic function f in PT piecewise continuous if f is
continuous everywhere on [−L,L], except for finitely many
points.

Example

The square wave defined by f (x + 2) = f (x) for all x , with
f (x) = 0 for −1 ≤ x < 0 and f (x) = 1 for 0 ≤ x < 1 is piecewise
continuous, since it has discontinuities only at 0 and 1 in [−1,1].
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Piecewise Continuity

Example
The triangular wave from last lecture is continuous, and
therefore piecewise continuous

Example

The periodic function f (x) = tan(x) has period π and is
piecewise continuous, since it has discontinuities only at ±π/2
in [−π/2, π/2]. However, it is not in Pπ because it is not square
integrable.

Example

The function f (x) = 1 if x is rational and f (x) = 0 if x is irrational
is periodic with period 1, but is not piecewise continuous.
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Pointwise Convergence

For piecewise continuous functions, we have an amazing
convergence result!

Theorem (Pointwise Convergence)

Suppose that f (x) is in PT and is piecewise continuous. Let
an,bm be the Fourier coefficients of f (x) for n ≥ 0 and m > 0.
Then for every fixed point p,

f (p+) + f (p−)
2

=
∞∑

n=0

an cos
(nπp

L

)
+
∞∑

m=1

bm sin
(mπp

L

)
where here f (p+) and f (p−) are the left and right limits of f (x)
as x → p.
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Square Wave Example

Consider the square wave

f (x) =
{

1 0 ≤ x < 1
0 −1 ≤ x < 0

, with f (x + 2) = f (x) for all x .

Using the Euler-Fourier formulas (with L = 1) we get:

a0 =
1

2L

∫ L

−L
f (x)dx =

1
2

∫ 1

0
1dx =

1
2
.

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx =

∫ 1

0
cos(nπx)dx =

1
nπ

sin(nπx)|10 = 0.

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx =

∫ 1

0
sin(nπx)dx

=
−1
nπ

cos(nπx)|10 =
1− cos(nπ)

nπ
=

1− (−1)n

nπ
.
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Square Wave Example

Note that f (x) is continuous for x 6= . . . ,−2,−1,0,1,2, . . .
Therefore f (x+) = f (x−) = f (x) for x not an integer
Also f (0+) = 1, f (0−) = 0, f (1+) = 0, f (1−) = 1, etc.
Therefore

f (x+) + f (x−)
2

=

{
f (x) if x is an integer
1/2 otherwise

In particular for any non-integer p

f (p) =
1
2
+
∞∑

m=1

1− (−1)n

nπ
sin
(mπp

L

)
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Exercises

Example
Work out the Fourier series for the function

f (x) =


1 0 ≤ x < 1
3 1 ≤ x < 2
2 2 ≤ x < 3

with f (x + 3) = f (x) for all x .

What does the Fourier series converge to for each value of x?
Where does it converge to the original value of the function
f (x)?

W.R. Casper Math 309 Lecture 15



Convergence of Fourier Series

Recap of Last Time
Convergence
Piecewise Continuity and Pointwise Convergence
Square Wave Example

summary!

what we did today:
Fourier series convergence

plan for next time:
Sine and Cosine Series
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