## Math 309 Lecture 15 Fourier Series Convergence

#### W.R. Casper

Department of Mathematics University of Washington

May 9, 2017



Plan for today:

• Fourier Series Convergence

Next time:

Sine and Cosine Series



### Convergence of Fourier Series

- Recap of Last Time
- Convergence
- Piecewise Continuity and Pointwise Convergence
- Square Wave Example

## **Periodic Functions**

Recall that  $\mathcal{P}_T$  is the Hilbert space of functions  $f : \mathbb{R} \to \mathbb{R}$  satisfying the two properties

(1) f(x + T) = f(x) for all x (ie. f is periodic with period T)

(2) the integral  $\int_0^T f(x)^2 dx$  exists and is finite (ie. *f* is square integrable on the interval [0, *T*]).

Given a function f(x) in  $\mathcal{P}_T$ , we can use the Euler-Fourier formulas to express (for L = T/2)

$$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{m=1}^{\infty} b_m \sin\left(\frac{m\pi x}{L}\right),$$

## **Euler-Fourier Formulas**

where here 
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$
 and for  $n > 0$ 

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

These are the Euler-Fourier Formulas.

Convergence of Fourier Series

Recap of Last Time Convergence Piecewise Continuity and Pointwise Convergence Square Wave Example

# Meaning of Convergence?

What does the expression

$$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{m=1}^{\infty} b_m \sin\left(\frac{m\pi x}{L}\right)$$

actually mean?

- The appearance of ∞ means we are taking a limit, so the above is a statement about convergence.
- In other words, we're looking at the partial Fourier sums

$$S_N(x) = \sum_{n=0}^N a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{m=1}^N b_m \sin\left(\frac{m\pi x}{L}\right),$$

 and asking about what happens as we choose N bigger and bigger ie.

$$\lim_{X \to 0} S_N(x).$$
  
W.R. Casper Math 309 Lecture

# Convergence in What Sense?

 Whenever you see a statement about convergence, immediately ask

### convergence in what sense?

- There are many types of convergence, such as:
  - (1) uniform convergence
  - (2) pointwise convergence
  - (3)  $L^2$ -convergence (ie. Hilbert space norm convergence)
- pointwise convergence means for every fixed value of x,  $S_N(x) \rightarrow f(x)$
- uniform convergence is stronger: it implies pointwise convergence
- L<sup>2</sup>-convergence doesn't quite imply pointwise convergence

# Hilbert Space Norm Convergence

- We derived the Fourier coefficients using Hilbert space inner products, so we're only guaranteed L<sup>2</sup>-convergence
- This means that

$$\lim_{N\to\infty}\int_{-L}^{L}|S_N(x)-f(x)|^2dx\to 0$$

- In practice, this means that  $S_N(x)$  converges pointwise to f(x) most places
- Technically everywhere but a set of measure zero, such as finitely many points

## **Piecewise Continuity**

 If we also assume f(x) is sufficiently nice, we can get a pointwise convergence result!

### Definition

We call a periodic function f in  $\mathcal{P}_T$  **piecewise continuous** if f is continuous everywhere on [-L, L], except for finitely many points.

#### Example

The square wave defined by f(x + 2) = f(x) for all x, with f(x) = 0 for  $-1 \le x < 0$  and f(x) = 1 for  $0 \le x < 1$  is piecewise continuous, since it has discontinuities only at 0 and 1 in [-1, 1].

# **Piecewise Continuity**

### Example

The triangular wave from last lecture is continuous, and therefore piecewise continuous

#### Example

The periodic function  $f(x) = \tan(x)$  has period  $\pi$  and is piecewise continuous, since it has discontinuities only at  $\pm \pi/2$  in  $[-\pi/2, \pi/2]$ . However, it is not in  $\mathcal{P}_{\pi}$  because it is not square integrable.

#### Example

The function f(x) = 1 if x is rational and f(x) = 0 if x is irrational is periodic with period 1, but is not piecewise continuous.

# Pointwise Convergence

 For piecewise continuous functions, we have an amazing convergence result!

#### Theorem (Pointwise Convergence)

Suppose that f(x) is in  $\mathcal{P}_T$  and is piecewise continuous. Let  $a_n, b_m$  be the Fourier coefficients of f(x) for  $n \ge 0$  and m > 0. Then for every fixed point p,

$$\frac{f(p+)+f(p-)}{2} = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi p}{L}\right) + \sum_{m=1}^{\infty} b_m \sin\left(\frac{m\pi p}{L}\right)$$

where here f(p+) and f(p-) are the left and right limits of f(x) as  $x \to p$ .

## Square Wave Example

Consider the square wave

$$f(x) = \begin{cases} 1 & 0 \le x < 1 \\ 0 & -1 \le x < 0 \end{cases}$$
, with  $f(x+2) = f(x)$  for all  $x$ .

• Using the Euler-Fourier formulas (with L = 1) we get:

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{2} \int_{0}^{1} 1 dx = \frac{1}{2}.$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \int_{0}^{1} \cos(n\pi x) dx = \frac{1}{n\pi} \sin(n\pi x)|_{0}^{1} = 0.$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \int_{0}^{1} \sin(n\pi x) dx$$

$$= \frac{-1}{n\pi} \cos(n\pi x)|_{0}^{1} = \frac{1 - \cos(n\pi)}{n\pi} = \frac{1 - (-1)^{n}}{n\pi}.$$

## Square Wave Example

- Note that f(x) is continuous for  $x \neq \ldots, -2, -1, 0, 1, 2, \ldots$
- Therefore f(x+) = f(x-) = f(x) for x not an integer
- Also f(0+) = 1, f(0-) = 0, f(1+) = 0, f(1-) = 1, etc.
- Therefore

$$\frac{f(x+)+f(x-)}{2} = \begin{cases} f(x) & \text{if } x \text{ is an integer} \\ 1/2 & \text{otherwise} \end{cases}$$

In particular for any non-integer p

$$f(p) = \frac{1}{2} + \sum_{m=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin\left(\frac{m\pi p}{L}\right)$$

## **Graphical Interpretation**



W.R. Casper Math 309 Lecture 15

### **Graphical Interpretation**



W.R. Casper Math 309 Lecture 15

### **Graphical Interpretation**



W.R. Casper Math 309 Lecture 15

### Exercises

#### Example

Work out the Fourier series for the function

$$f(x) = \begin{cases} 1 & 0 \le x < 1 \\ 3 & 1 \le x < 2 \\ 2 & 2 \le x < 3 \end{cases}$$
 with  $f(x+3) = f(x)$  for all  $x$ .

What does the Fourier series converge to for each value of x? Where does it converge to the original value of the function f(x)?



what we did today:

• Fourier series convergence

plan for next time:

Sine and Cosine Series