### Math 309 Lecture 16 Sine and Cosine Series

#### W.R. Casper

Department of Mathematics University of Washington

May 11, 2017



Plan for today:

• Sine and Cosine Series

Next time:

Boundary Value Problems





#### Sine and Cosine Series

- Main Idea
- Periodic Expansion Options
- Sine and Cosine Series

#### 2 Examples

- Cosine Series Example
- Sine Series Example

Main Idea Periodic Expansion Options Sine and Cosine Series

# **Expanding Arbitrary Functions**

- So far, we've used Fourier series to expand trig functions in terms of elementary trig functions
- What about functions f(x) which are not periodic, such as  $f(x) = x^2$ ?
- We can but only on a fixed finite interval [0, L], where we get to pick L.
- To do so, we replace f(x) with a periodic function agreeing with f(x) on [0, L]
- Then we take the Fourier transform

Main Idea Periodic Expansion Options Sine and Cosine Series

# An Example

#### Example

Consider  $f(x) = x^2$ . We can find an expansion for f(x) in terms of elementary trig functions on [0, L] by replacing f(x) with g(x) defined by

 $g(x) = f(x) - L \le x < L$ , with g(x + 2L) = g(x) for all x.

Using the Euler-Fourier equations to get the Fourier coefficients, we find

$$g(x) = \frac{-L^3}{6} + \sum_{n=1}^{\infty} \frac{4L^3(-1)^n}{\pi^2 n^2} \cos\left(\frac{n\pi x}{L}\right)$$

since g(x) agrees with f(x) on [0, L], this series converges to f(x) there too!

Sine and Cosine Series

Examples

Main Idea Periodic Expansion Options Sine and Cosine Series

## **Graphical Interpretation**



Sine and Cosine Series

Main Idea Periodic Expansion Options Sine and Cosine Series

# Graphical Interpretation



Sine and Cosine Series

Main Idea Periodic Expansion Options Sine and Cosine Series

# Graphical Interpretation



Main Idea Periodic Expansion Options Sine and Cosine Series

## Which Periodic Expansion?

- Notice that the periodic expansion we chose of f(x) = x<sup>2</sup> was not unique!
- Other options include

$$g(x) = \begin{cases} x^2 & 0 \le x < L \\ -x^2 & -L \le x < 0 \end{cases} \text{ with } g(x+2L) = g(x) \text{ for all } x.$$
  

$$g(x) = \begin{cases} x^2 & 0 \le x < L \\ 0 & -L \le x < 0 \end{cases} \text{ with } g(x+2L) = g(x) \text{ for all } x.$$
  

$$g(x) = \begin{cases} x^2 & 0 \le x < L \\ -x & -L \le x < 0 \end{cases} \text{ with } g(x+2L) = g(x) \text{ for all } x.$$

• These are all periodic and agree with *f*(*x*) on [0, *L*].

Main Idea Periodic Expansion Options Sine and Cosine Series

## Which Periodic Expansion?

- So which expansion should we choose?
- Here's some points to keep in mind
  - (1) Our pointwise convergence theorem gives pointwise convergence, but **doesn't say what rate**. Some periodic extensions will give faster convergence!
  - (2) In applications, there may be a natural choice of periodic extension
  - (3) If we extend it to a even or odd periodic function, then our Fourier series will involve sine terms or cosine terms only.
- We'll focus on this last point...

Main Idea Periodic Expansion Options Sine and Cosine Series

## Sine and Cosine Series

#### Definition

Let f(x) be a function defined on an interval [0, L]. The **cosine** series for f(x) is an expansion of the form

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_0 \cos\left(\frac{n\pi x}{L}\right).$$

The **sine series** for f(x) is an expansion of the form

$$f(x) = \sum_{m=1}^{\infty} b_m \sin\left(\frac{m\pi x}{L}\right).$$

Main Idea Periodic Expansion Options Sine and Cosine Series

# **Calculating Cosine Series**

- To calculate the *a<sub>n</sub>*'s in the cosine series:
  - (1) Expand f(x) evenly and periodically (with period 2*L*), getting a new function g(x)
  - (2) Calculate the Fourier coefficients of g(x)
  - (3) The b<sub>m</sub>'s in the Fourier series will all be zero, and the a<sub>n</sub>'s will be the coefficients we want!

Main Idea Periodic Expansion Options Sine and Cosine Series

# **Calculating Sine Series**

- To calculate the *b<sub>n</sub>*'s in the sine series:
  - (1) Expand f(x) oddly and periodically (with period 2*L*), getting a new function g(x)
  - (2) Calculate the Fourier coefficients of g(x)
  - (3) The a<sub>n</sub>'s in the Fourier series will all be zero, and the b<sub>m</sub>'s will be the coefficients we want!

Cosine Series Example Sine Series Example

# An Example

#### Example

Calculate the cosine series of the function f(x) = 2x on the interval [0, 3].

• We want a cosine series, so we expand *f*(*x*) evenly to a function *g*(*x*):

$$g(x) = \left\{egin{array}{ccc} 2x & 0 \leq x < 3 \ -2x & -3 \leq x < 0 \end{array}
ight.$$
 with  $g(x+6) = g(x)$  for all  $x.$ 

Sine and Cosine Series Examples Sine Series Example

## An Example

• Using this, we calculate (with even/odd arguments)

$$a_0 = \frac{1}{2L} \int_{-L}^{L} g(x) dx = \frac{1}{L} \int_{0}^{L} g(x) dx = \frac{1}{3} \int_{0}^{3} 2x dx = \frac{9}{3}$$

$$\begin{aligned} a_n &= \frac{1}{L} \int_{-L}^{L} g(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} g(x) \cos\left(\frac{n\pi x}{L}\right) dx \\ &= \frac{2}{3} \int_{0}^{3} 2x \cos\left(\frac{n\pi x}{3}\right) = \frac{12((-1)^n - 1)}{n^2 \pi^2} \\ b_m &= \frac{1}{L} \int_{-L}^{L} g(x) \sin\left(\frac{m\pi x}{L}\right) dx = 0. \end{aligned}$$

Cosine Series Example Sine Series Example

### An Example

This tells us

$$g(x) = \frac{9}{3} + \sum_{n=1}^{\infty} \frac{12((-1)^n - 1)}{n^2 \pi^2} \cos\left(\frac{n\pi x}{3}\right),$$

and therefore for  $0 \le x < 3$ :

$$f(x) = 2x = \frac{9}{3} + \sum_{n=1}^{\infty} \frac{12((-1)^n - 1)}{n^2 \pi^2} \cos\left(\frac{n\pi x}{3}\right),$$

Cosine Series Example Sine Series Example

# Graphical Interpretation



Cosine Series Example Sine Series Example

## **Graphical Interpretation**



Cosine Series Example Sine Series Example

### **Graphical Interpretation**



Cosine Series Example Sine Series Example

# An Example

#### Example

Calculate the sine series of the function f(x) = 1 - x on the interval [0, 1].

We want a sine series, so we expand f(x) oddly to a function g(x):

$$g(x) = \left\{ egin{array}{ccc} 1-x & 0 \leq x < 1 \ -1-x & -3 \leq x < 0 \end{array} 
ight.$$
 with  $g(x+2) = g(x)$  for all  $x$ .

Sine and Cosine Series Cosine Series Example Sine Series Example

## An Example

• Using this, we calculate (with even/odd arguments)

$$a_0=\frac{1}{2L}\int_{-L}^{L}g(x)dx=0.$$

$$a_n = rac{1}{L}\int_{-L}^{L}g(x)\cos\left(rac{n\pi x}{L}
ight)dx = 0.$$

$$b_m = \frac{1}{L} \int_{-L}^{L} g(x) \sin\left(\frac{m\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} g(x) \sin\left(\frac{m\pi x}{L}\right) dx$$
$$= 2 \int_{0}^{1} (1-x) \sin(m\pi x) = \frac{2}{m\pi}.$$

Cosine Series Example Sine Series Example

### An Example

This tells us

$$g(x)=\sum_{m=1}^{\infty}\frac{2}{m\pi}\sin(m\pi x),$$

and therefore for  $0 \le x < 1$ :

$$f(x) = 1 - x = \sum_{m=1}^{\infty} \frac{2}{m\pi} \sin(m\pi x).$$

Cosine Series Example Sine Series Example

### **Graphical Interpretation**



Cosine Series Example Sine Series Example

### **Graphical Interpretation**



Cosine Series Example Sine Series Example

### **Graphical Interpretation**



Cosine Series Example Sine Series Example

### summary!

what we did today:

Sine and Cosine Series

plan for next time:

Boundary Value Problems