Math 309 Lecture 3 Linear Systems of ODEs

W.R. Casper

Department of Mathematics University of Washington

March 27, 2017

Today!

Plan for today:

- First Order Linear Systems of ODEs
- **•** Existence and Uniqueness
- Homogeneous First Order Linear Systems with Constant **Coefficients**

Next time:

- **o** Wronskian
- **More Practice with Homogeneous First Order Linear** Systems

Outline

a **first order linear system** of equations is something of the form

$$
y'_1(t) = a_{11}(t)y_1(t) + a_{12}(t)y_2(t) + \dots a_{1n}(t)y_n(t) + b_1(t)
$$

\n
$$
y'_2(t) = a_{21}(t)y_1(t) + a_{22}(t)y_2(t) + \dots a_{2n}(t)y_n(t) + b_2(t)
$$

\n
$$
\vdots = \vdots
$$

\n
$$
y'_n(t) = a_{n1}(t)y_1(t) + a_{n2}(t)y_2(t) + \dots a_{nn}(t)y_n(t) + b_n(t)
$$

• where the $a_{ij}(t)$ and $b_i(t)$ are some specified functions • and the y_i are some unknown functions we wish to find \bullet in terms of matrices:

$$
\vec{y}'(t) = A(t)\vec{y}(t) + \vec{b}(t)
$$

- as for algebraic linear systems, it is convenient to consider the case when $\vec{b}(t) = \vec{0}$
- a **homogeneous first order linear system** of equations is something of the form

$$
y'(t) = A(t)y(t).
$$

 \bullet as in the $n = 1$ case, to any first order linear system, we associate a homogeneous system

$$
y'(t) = A(t)y(t) + b(t) \longrightarrow y'_h(t) = A(t)y_h(t).
$$

solving the homogeneous system will be the key to solving the full system

• just like homogeneous algebraic systems, we have a **superposition principle**

Theorem (Superposition Principle)

Suppose that $\vec{y}(t) = \vec{w}(t)$ and $\vec{y}(t) = \vec{z}(t)$ are two solutions to $y' = A(t)\vec{y}(t)$. Then for any scalars $c_1, c_2, y = c_1w(t) + c_2z(t)$ is also a solution.

- the set of solutions to $y' = A(t)\vec{y}(t)$ forms a *vector space*
- natural question: what is the dimension of the space of solutions?

Theorem (Existence and Uniqueness)

Let $A(t) = (a_{ij}(t))$ be an $n \times n$ matrix, and $\vec{b}(t) = (b_i(t))$ be a vector with $a_{ij}(t)$, $b_i(t)$ continuous on the interval (α, β) for all $i,j.$ Then for any vector $\vec{\mathsf v} \in \mathbb R^n$ and $t_0 \in (\alpha,\beta),$ there exists a unique solution to the initial value problem

$$
y'(t) = A(t)y(t) + b(t), y(t_0) = \vec{v}.
$$

Corollary

If $A(t)$ is continuous on (α, β) , then the set of solutions to $y'(t) = A(t)\vec{y}(t)$ on (α, β) is *n*-dimensional.

• Proved in class!

Fundamental Set of Solutions

- **e** let *A*(*t*) be an $n \times n$ matrix continuous on (α, β) . Then a basis for the set of solutions to $y'(x) = A(x)y(x)$ is called a **fundamental set of solutions** for the system on the interval (α, β)
- in other words, a fundamental set of solutions is a set of *n* solutions $\vec{y}_1(x), \ldots, \vec{y}_n(x)$ which are linearly independent and such that every solution to $y'(x) = A(x)y(x)$ is of the form

$$
c_1\vec{y}_1(x)+c_2\vec{y}_2(x)+\cdots+c_n\vec{y}_n(x)
$$

for some constants c_1, c_2, \ldots, c_n

 \bullet traditionally, we then call

$$
y = c_1 \vec{y}_1(x) + c_2 \vec{y}_2(x) + \cdots + c_n \vec{y}_n(x)
$$

the **general solution**

a **homogeneous first order linear system of equations with constant coefficients** is something of the form

$$
\vec{y}(t)' = A\vec{y}(t)
$$

where *A* is a *constant* matrix (does not depend on *t*)

- can be solved explicitly by hand!
- the secret sauce to do this is eigenvalues

Using Eigenvalues

- we propose a solution of the form $\vec{y}(t) = e^{rt}\vec{v}$ for some constant vector \vec{v} and some constant *r*
- putting this into our equation, we get

$$
re^{rt}\vec{v} = \vec{y}' = A\vec{y} = Ae^{rt}\vec{v} = e^{rt}A\vec{v}
$$

dividing by e^{rt} , this says $r\vec{v} = A\vec{v}$, eg. v is an eigenvector of *A* with eigenvalue *r*

Proposition

Let *A* be an $n \times n$ matrix. If \vec{v} is an eigenvector of *A* with eigenvalue r , then $\vec{y} = e^{rt}\vec{v}$ is a solution to $y' = Ay$

Question

Find the general solution of the differential equation

$$
y'(t) = Ay(t), A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}
$$

- idea: use the solutions determined by eigenvectors and eigenvalues!
- eigenvalues of *A* are 1 and 2 (why?)
- corresponding eigenspaces:

$$
E_1=\text{span}\left\{\left(\begin{array}{c}1\\0\end{array}\right)\right\},\quad E_2=\text{span}\left\{\left(\begin{array}{c}1\\1\end{array}\right)\right\}
$$

 \bullet this gives us solutions

$$
\vec{y}_1=e^t\left(\begin{array}{c}1\\0\end{array}\right),\ \ \vec{y}_2=e^{2t}\left(\begin{array}{c}1\\1\end{array}\right)
$$

- are they linearly independent? Yes! Can use the Wronskian to check (discussed next time)
- hence must be a fundamental solution set on $(-\infty, \infty)$
- o general solution:

$$
y = c_1 e^t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

What we did today:

Systems of first order linear ODEs

Plan for next time:

Systems of first order ODEs