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Plan for today:
@ Complex Eigenvalues
@ Stability of the Origin
Next time:
@ Fundamental Matrix
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Review of Results from Last Time

@ the origin is always a fixed point of y'(t) = Ay(t)
@ eg. y(t) = 0 is a constant solution of the equation

@ how other solutions behave is based on the eigenvalues of
A:

(a) if both eigenvalues of A are real and positive, then origin is
an exponentially unstable node

(b) if both eigenvalues of A are real and negative, then origin is
an exponentially stable node

(c) if both eigenvalues of A are mixed sign, then origin is a
saddle point

(d) what about when the eigenvalues of A are complex?
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Spirally Slope Fields

@ slope fields for complex eigenvalues are characterized by

spiral patterns
@ for example:
(12 A
a=( 1 k)
@ characteristic polynomial is
pA(X) = det(A — XI) — x2 X+ g

@ eigenvalues of Aare —(1/2) + i
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Complex Eigenvalues: —(1/2) £

Direction Field for 2/ =—0.52 + 1.0y, 3 =—1.0z +—0.5y
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Behavior of the Origin

@ suppose that A has complex eigenvalues

@ they come in conjugate pairs! \y =a+ib, \o =a—ib

@ the origin is always a fixed point of y'(t) = Ay(t)

@ whether our ship moves toward or away depends on value
of a

(a) if ais positive, move away
(b) if ais negative, move toward
(c) if ais zero, circle around
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What about General Solutions?

How do we find the general solution in the case that A has
complex eigenvalues?

@ use Euler’s definition!
e’ = cos(f) + isin(h)

@ we can then take our eigenvalue solutions and write them
as linear combinations of real solutions
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Find the general solution of the equation

SN po (11

@ first we find the eigenvalues: —(1/2) + i
@ then we find the corresponding eigenspaces:

1 1
E_(1/2)+i = span { ( i ) } E_(1/2)-i = span { ( i > }
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@ from this we get two (complex) solutions

Ji(t) = < j )e(_” 2L (1) = ( 1 )e(_”z_m

i —i

@ by the superposition principal we get the family of
solutions:

() = o ( 1[ >9(71/2+i)r+02 ( ii )e(—1/2—i)t

— t) + isin(t, — cos(t) — isin(t
=€ t/z( 72§§&>J§'.2§3 )“29 UZ( —icgs?(t)l—lsir(l()t) )

—etre (o oot i S esniy )
i(er — ez) cos(t) — (e1 + cz) sin({)

_ et/ ( by cos(t) + by sin(t) )
- by cos(t) — by sin(t)

(2 Y ()
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Correspondence

@ the stability of the origin depends on the eigenvalues of the
matrix A
@ five possibilities:
(1) all eigenvalues are real and negative —> origin is
exponentially stable (sink)
(2) all of the eigenvalues are real and positive —> origin is
unstable (source)
(3) eigenvalues are real and opposite-signed —> origin is
saddle
(4) both of the eigenvalues are complex with positive real
component —> origin is spirally unstable (spiral source)
(5) both of the eigenvalues are complex with nonpositive real
component —> origin is spirally stable (spiral sink)
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Alternative Correspondence

@ the stability may also be classified based on the
determinant and trace of A

@ this is because
pa(x) = x2 — tr(A)x + det(A).

@ five possibilities:
(1) tr(A)? > 4 det(A) and det(A) < 0 —> saddle
(2) tr(A)? > 4det(A), det(A) > 0, and tr(A) > 0 —> unstable
(3) tr(A)? > 4det(A), det(A) > 0, and tr(A) < 0 —>
exponentially stable
(4) tr(A)? < 4det(A) and tr(A) < 0 —> spirally stable
(5) tr(A)? < 4det(A) and tr(A) > 0 — spirally unstable
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Stability Picture
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Figure: Picture of Classification (DR Hundley, Whitman College)
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What we did today:
@ Complex Eigenvalues
@ Stability of the Origin
Plan for next time:
@ Fundamental Matrix
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