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Today!

Plan for today:
Fundamental Matrix
Matrix-Valued Functions
Fundamental Matrices for Homogeneous Linear Systems
with Constant Coefficients

Next time:
Repeated Eigenvalues
Matrix Exponentials
Fundamental Matrix
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Outline
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Fundamental Matrices

Consider the homogeneous linear system of equations

~y ′(t) = A(t)~y(t)

where here A(t) is an n × n matrix continuous on the interval
(α, β)

an n × n matrix Ψ(t) whose column vectors form a
fundamental set of solutions on the interval (α, β) is called
a fundamental matrix
Important note: a fundamental matrix Ψ(t) will be invertible
for every t ∈ (α, β) since its column vectors will be linearly
independent
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Example

Question
Find a fundamental matrix for the equation

~y ′(t) = A~y(t), A =

(
1 1
0 2

)

1 the eigenvalues of A are 1,2
2 the corresponding eigenspaces are

E1(A) = span
{(

1
0

)}
E2(A) = span

{(
1
1

)}
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Example

Question
Find a fundamental matrix for the equation

~y ′(t) = A~y(t), A =

(
1 1
0 2

)

1 this gives us a fundamental set of solutions(
et

0

)
,

(
e2t

e2t

)
2 therefore we have a fundamental matrix

Ψ(t) =

(
et e2t

0 e2t

)
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Properties of the Fundamental Matrix

Suppose that Ψ(t) is a fundamental matrix for the equation
~y ′(t) = A(t)~y(t) on the interval (α, β) where A(t) is continuous.
Then the following is true:
(a) Ψ(t) is invertible on the interval (α, β)

(b) Ψ(t) satisfies the equation Ψ′(t) = A(t)Ψ(t)
(c) for all constant vectors ~c, ~y(t) = Ψ(t) · ~c is a solution to

~y ′(t) = A(t)~y(t)
(d) if t0 ∈ (α, β) and ~v is a constant vector, then

~y(t) = Ψ(t) · (Ψ(t0)−1~v) is the unique solution of the IVP

~y ′(t) = A(t)~y(t), y(t0) = ~v .

(e) the general solution of ~y ′(t) = A(t)~y(t) is

~y(t) = Ψ(t) · ~c
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Morpheus Says
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Matrix Cosine

Consider the Taylor series of cos(x) based at 0:

f (x) = 1− 1
2

x2 +
1
4!

x4 + · · · =
∞∑

j=0

(−1)j

(2j)!
x2j

we define the matrix cosine cos(A) of an n×n matrix A by

cos(A) := I − 1
2

A2 +
1
4!

A4 + · · · =
∞∑

j=0

(−1)j

(2j)!
A2j

let’s do an example

W.R. Casper Math 309 Lecture 8



An Example

Consider the matrix

A =

(
1 1
0 2

)
then one may check that

Aj =

(
1 2j − 1
0 2j

)
and therefore

cos(At) =
∞∑

j=0

(−1)j

(2j)!
(At)2j =

∞∑
j=0

(−1)j

(2j)!

(
t2j (2t)2j − t2j

0 (2t)2j

)
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An Example

Now we know that
∞∑

j=0

(−1)j

(2j)!
t2j = cos(t)

∞∑
j=0

(−1)j

(2j)!
(2t)2j = cos(2t)

therefore the previous expression shows

cos(At) =

(
cos(t) cos(2t)− cos(t)

0 cos(2t)

)
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Matrix Sine/Matrix Exponential

in a similar way, we define matrix sine

sin(A) := A− 1
3!

A3 +
1
5!

A5 − · · · =
∞∑

j=0

(−1)j+1

(2j + 1)!
A2j+1

and matrix exponential

exp(A) := I + A +
1
2

A2 +
1
6

A3 + · · · =
∞∑

j=0

1
j!

Aj .

note that Euler’s definition still holds for matrices:

exp(iA) = cos(A) + i sin(A)
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Taylor Series

Given a function f (x) with a Taylor series based at 0

f (x) = f (0) + f ′(0)x +
1
2

f ′′(0)x2 +
1
6

f ′′′(0)x3 + · · · =
∞∑

j=0

f (j)(0)

j!
x j

for a “sufficiently nice" n × n matrix A, we define

f (A) := f (0)I+f ′(0)A+
1
2

f ′′(0)A2+
1
6

f ′′′(0)A3+· · · =
∞∑

j=0

f (j)(0)

j!
Aj

Sufficiently nice means eigenvalues of matrix live within radius
of convergence of Taylor series
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Calculation by Hand?

Question
For some function f (x) can we calculate f (A) by hand?

if D is a diagonal matrix, then it’s easy!

Theorem
If D is a diagonal matrix with diagonal entries d1,d2, . . . ,dn,
then f (D) is a diagonal matrix with entries
f (d1), f (d2), . . . , f (dn).

for example

A =

(
d1 0
0 d2

)
=⇒ cos(A) =

(
cos(d1) 0

0 cos(d2)

)
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Diagonalizable Matrices

Recall that a matrix A is diagonalizable if there exists an
invertible matrix P and a diagonal matrix D such that
P−1AP = D.
in this case we can also easily calculate f (A)!
observe that A = PDP−1 and therefore

A2 = (PDP−1)(PDP−1) = PD2P−1

A3 = A2A = (PD2P−1)(PDP−1) = PD3P−1

more generally Aj = PDjP−1
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Diagonalizable Matrices

from this we see

f (A) =
∞∑

j=0

f (j)(0)

j!
Aj =

∞∑
j=0

f (j)(0)

j!
PDjP−1

= P

 ∞∑
j=0

f (j)(0)

j!
Dj

P−1 = Pf (D)P−1.

this gives us the following:

Theorem

Suppose that A is diagonalizable with P−1AP = D for some
diagonal matrix D and invertible matrix P. Then

f (A) = Pf (D)P−1.
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Example

Question

Calculate eAt for A =

(
1 1
0 2

)

We know that A has eigenvalues 1 and 2, and eigenspaces

E1(A) = span
{(

1
0

)}
E2(A) = span

{(
1
1

)}
therefore we have that

P−1AP = D, for P =

(
1 1
0 1

)
, D =

(
1 0
0 2

)
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Example

note that (
1 1
0 1

)−1

=

(
1 −1
0 1

)
therefore by our Theorem,

eAt = PeDtP−1 =

(
1 1
0 1

)
exp

(
t 0
0 2t

)(
1 1
0 1

)−1

=

(
1 1
0 1

)(
et 0
0 e2t

)(
1 1
0 1

)−1

=

(
1 1
0 1

)(
et 0
0 e2t

)(
1 −1
0 1

)
=

(
et e2t − et

0 e2t

)
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Matrix Exponential Properties

we calcuate the derivative of eAt :

d
dt

eAt =
d
dt

∞∑
j=0

1
j!

Aj t j =
∞∑

j=0

1
j!

jAj t j−1

=
∞∑

j=1

1
(j − 1)!

Aj t j−1 =
∞∑

j=0

1
j!

Aj+1t j

= A
∞∑

j=0

1
j!

Aj t j = A exp(At)

therefore (eAt )′ = AeAt
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Matrix Exponential Properties

Note also that if B is another matrix satisfying AB = BA,
then

eAeB =

 ∞∑
j=0

1
j!

Aj

( ∞∑
k=0

1
k !

Bk

)

=
∞∑

j,k=0

1
(j!)(k !)

AjBk =
∞∑

m=0

m∑
j=0

1
(j!)((m − j)!)

AjBm−j

=
∞∑

m=0

m∑
j=0

(
m
j

)
1

m!
AjBm−j =

∞∑
m=0

1
m!

(A + B)m = eA+B

in particular (eA)−1 = e−A
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Fundamental Matrix

putting this all together, we have that Ψ(t) = exp(At)
satisfies Ψ′(t) = AΨ(t)
and also that Ψ(t) is nonsinguar, since it has inverse
exp(−At)
therefore the column vectors of Ψ(t) form n linearly
independent solutions to ~y ′(t) = A~y(t)

Theorem

A fundamental matrix of the system ~y ′(t) = A~y(t) on the
interval (−∞,∞) is Ψ(t) = exp(At)
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Practice

Find the fundamental matrix of the system ~y ′(t) = A~y(t) for
each of the following values of A

1

A =

(
3 −2
2 −2

)
2

A =

(
2 −5
1 −2

)
3

A =

(
1 1
4 −2

)
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Summary!

What we did today:
Fundamental Matrices
Matrix-Valued Functions
Fundamental Matrices of Homogeneous First-order
systems with Constant Coefficients

Plan for next time:
Nonhomogeneous equations
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