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Today!

Plan for today:
Diagonalization
Jordan Normal Form
Calculating a Fundamental Matrix

Next time:
Nonhomogeneous Differential Equations
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Diagonalizable Matrices

two matrices A and B are similar if there exists an
invertible matrix P satisfying P−1AP = B
natural concept – related to change of basis
a matrix is said to be diagonalizable if it is similar to a
diagonal matrix
a matrix which is not diagonalizable is called defective

Question
What matrices are diagonalizable?
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Eigenbasis

we have the following theorem:

Theorem
Let A be a diagonal matrix. Then the following are equivalent:
(a) A is diagonalizable
(b) Cn as a basis consisting of eigenvectors of A (an

eigenbasis)
(c) for every eigenvalue λ of A, the algebraic and geometric

multiplicity of λ are the same

in other words, A needs “enough" eigenvectors
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Special cases

there are a couple theorems that help us to decide right
away if matrices are diagonalizable

Theorem
If all of the eigenvalues of A have algebraic multiplicity 1, then A
is diagonalizable

Theorem (Spectral Theorem)

If A is normal (ie. A and A† commute), then A is diagonalizable

in particular, Hermitian (A = A†) and unitary (A† = A−1))
matrices are diagonalizable
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Example

the following matrix is diagonalizable (why?): 3 2 1
2 5 4
1 4 −1


the following matrix is diagonalizable (why?): 3 4 9

0 1 −4
0 0 −1


the following matrix is NOT diagonalizable (why?):(

1 1
0 1

)
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Use the Eigenbasis

Question
How do we diagonalize a matrix?

suppose that A is diagonalizable
let ~v1, ~v2, . . . , ~vn be an eigenbasis for Rn

let λ1, λ2, . . . , λn be the corresponding eigenvalues (resp)
then P−1AP = D for

P =
(
~v1 ~v2 . . . ~vn

)
, D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


order is important!!
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Example

Question

Find P invertible and D diagonal so that P−1AP = D for

A =

 3 2 1
2 5 4
1 4 −1


Steps:

1 Calculate the eigenvalues (diagonal values of matrix D)
2 For each eigenvalue, find a basis for the eigenspace
3 Put all the bases together to get an eigenbasis for R3

4 Use them as column vectors in matrix P
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Example

1 characteristic poly:

pA(x) = det(A− xI) = −(x + 3)(x − 2)(x − 8)

Therefore eigenvalues are −3,2,8
2 corresponding eigenspaces:

E−3 = span


 0
−1
1


E2 = span


 −5

2
1


E8 = span


 1

2
1


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Example

3 eigenbasis for R3:
 0
−1
1

 ,

 −5
2
1

 ,

 1
2
1


4 consequently we have

P =

 0 −5 1
−1 2 2
1 1 1

 D =

 −3 0 0
0 2 0
0 0 8


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Basic Definition

a Jordan block of size m is an m ×m matrix of the form

Jm(λ) :=



λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
0 0 λ 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
0 0 0 0 . . . λ


ie. it is a matrix with some constant value λ on the main
diagonal and 1 on the first superdiagonal
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Examples

some examples of Jordan blocks include

J1(13) = (13)

J2(−7) =
(

7 1
0 7

)

J3(−
√

5) =


√

5 1 0
0
√

5 1
0 0

√
5



J4(π) =


π 1 0 0
0 π 1 0
0 0 π 1
0 0 0 π


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Jordan Normal Form

A matrix B is in Jordan normal form if it is in the form

B =


Jm1(λ1) 0 . . . 0

0 Jm2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jm`

(λ`)


for example, a diagonal matrix is a matrix in Jordan normal
form
other examples include

 0 1 0
0 0 0
0 0 2




1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2




3 0 0 0
0 4 0 0
0 0 7 1
0 0 0 7


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Jordan Decomposition

not every matrix is diagonalizable
however, every matrix is similar to a matrix in Jordan
normal form
the Jordan normal form of a matrix is unique (up to
permutation of the Jordan blocks)
one way to think about this is in terms of generalized
eigenvectors
a generalized eigenvector of rank k with eigenvalue λ is
a nonzero vector in the kernel of (A− λI)k but not in the
kernel of (A− λI)k−1

the dimension of the space of generalized eigenvectors of
an eigenvalue is always the same as the algebraic
multiplicity
this gives rise to Jordan normal form
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How to Decompose

Question

How do we find P,N so that P−1AP = N, with N in Jordan
normal form?

difficult operation in general
for each eigenvalue λ, find a basis ~v1, ~v2, . . . , ~vr of the
eigenspace Eλ(A)
then find generalized eigenvectors...
difficult/long to do in general
will focus on 2× 2 and 3× 3 cases
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Possible 2× 2 Jordan Normal Forms

Question
If A is a 2× 2 matrix, what are the possible Jordan normal
forms of A?

if A is nondegenerate, then A is diagonalizable with
eigenvalues λ1, λ2 and its Jordan form is(

λ1 0
0 λ2

)
if A is degenerate, then A has exactly one eigenvalue λ
with alg. mult 2, and geom. mult 1, and its Jordan form is(

λ 1
0 λ

)
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Calculating the matrix P

Question

If A is a 2× 2 matrix, how do we find P so that P−1AP = N?

if A is nondegenerate, with eigenvalues λ1, λ2 we do the
usual thing:

STEP 1: choose ~v1 ∈ Eλ1(A)
STEP 2: choose ~v2 ∈ Eλ2(A)
STEP 3: set P = [~v1 ~v2]

if A is degenerate with eigenvalue λ, then use the following
steps:

STEP 1: choose ~v /∈ Eλ(A)
STEP 2: set ~u = (A− λI)~v
STEP 3: set P = [~u ~v ] (order is important!!)

W.R. Casper Math 309 Lecture 9



Example 1

Question
Find the Jordan normal form of the matrix

A =

(
1 1/2
0 1

)

char. poly is (x − 1)2, so eigenvalues are 1,1
eigenspace:

E1(A) = span{~v} = span
{(

1
0

)}
degenerate! since alg mult 6= geom mult.
Choose ~v =

(0
1

)
/∈ E1(A). Calculate ~u = (A− 1I)~v =

(1/2
0

)
then take P = [~u ~v ].
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Example 1 Continued

Question
Find the Jordan normal form of the matrix

A =

(
1 1/2
0 1

)

in other words

P =

(
1/2 0
0 1

)
then Jordan form for A is

N =

(
1 1
0 1

)
and we have P−1AP = N
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Example 2

Question
Find the Jordan normal form of the matrix

A =

(
7 1
−1 5

)

char. poly is (x − 6)2, so eigenvalues are 6,6
eigenspace:

E6(A) = span{~v} = span
{(

1
−1

)}
degenerate! since alg mult 6= geom mult.
Choose ~v =

(1
0

)
/∈ E6(A). Calculate ~u = (A− 6I)~v =

( 7
−1

)
.

then take P = [~u ~v ].
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Example 2

Question
Find the Jordan normal form of the matrix

A =

(
7 1
−1 5

)

in other words

P =

(
7 −1
1 0

)
then Jordan form for A is

N =

(
6 1
0 6

)
and we have P−1AP = N
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summary!

what we did today:
diagonalizable matrices
jordan normal form

plan for next time:
3× 3 Jordan normal form
calculating a fundamental matrix
nonhomogeneous equations
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