Math 309 Quiz 1 Solutions

April 13, 2017

Problem 1. For each of the following, write TRUE if the statement is true and BANANAS if the statement is false. Throughout A is an $n \times n$ matrix.

- (a) If A is an upper triangular matrix ,then the entries on the main diagonal of A are exactly the eigenvales of A.
- (b) If the sum of the geometric multiplicities of all of the eigenvalues of A is n, then A is non-degenerate
- (c) Eigenvalues cannot be zero
- (d) The zero vector is never an eigenvector

Solution 1.

- (a) True
- (b) True
- (c) False
- (d) True

Problem 2. For the given matrix A fill in the following table:

λ	$m_a(\lambda)$	$m_g(\lambda)$	$E_{\lambda}(A)$ basis	
$A = \left(\begin{array}{cc} 3 & 2\\ 1 & 4 \end{array}\right).$				

Solution 2.

λ	$m_a(\lambda)$	$m_g(\lambda)$	$E_{\lambda}(A)$ basis
5	1	1	$\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$
2	1	1	$\left\{ \begin{pmatrix} -2\\ 1 \end{pmatrix} \right\}$

Problem 3. Give an example of a 3×3 matrix A which is degenerate (ie. has an eigenvalue whose algebraic and geometric multiplicities do not agree).

Solution 3. Several examples include

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 2 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$