Math 309 Quiz 3

April 28, 2017

Problem 1. TRUE or BANANAS? A fundamental matrix for the system of equations

$$\frac{d}{dt}\vec{y}(t) = A\vec{y}(t)$$

will necessarily be invertible.

Problem 2. TRUE or BANANAS? If the Wronskian

$$W[\vec{f_1},\ldots,\vec{f_N}]$$

of a collection of vector-valued functions $\vec{f_1}, \ldots, \vec{f_N}$ is zero, then the functions $\vec{f_1}, \ldots, \vec{f_N}$ are linearly dependent.

Problem 3. Suppose that A is a 2×2 matrix with two distinct, *real* eigenvalues λ_1 and λ_2 . Under what conditions on λ_1 and λ_2 is the critical point at the origin exponentially stable, exponentially unstable, or a saddle?

Problem 4. Find a real basis for the solution space of the system of differential equations

$$y'_1 = 3y_1 + y_2$$

 $y'_2 = -y_1 + 3y_2$