May 25, 2017

Problem 1. TRUE or BANANAS? A fundamental matrix for the system of equations

$$\frac{d}{dt}\vec{y}(t) = A\vec{y}(t)$$

will necessarily be invertible.

Solution 1. TRUE.

Problem 2. TRUE or BANANAS? If the Wronskian

 $W[\vec{f_1},\ldots,\vec{f_N}]$

of a collection of vector-valued functions $\vec{f_1}, \ldots, \vec{f_N}$ is zero, then the functions $\vec{f_1}, \ldots, \vec{f_N}$ are linearly dependent.

Solution 2. FALSE.

Problem 3. Suppose that A is a 2×2 matrix with two distinct, *real* eigenvalues λ_1 and λ_2 . Under what conditions on λ_1 and λ_2 is the critical point at the origin exponentially stable, exponentially unstable, or a saddle?

Solution 3. If λ_1 and λ_2 are both positive, then the critical point is exponentially unstable. If λ_1 and λ_2 are both negative, then the critical point is exponentially stable. If λ_1 and λ_2 have opposite signs, then the critical point is a saddle.

Problem 4. Find a real basis for the solution space of the system of differential equations

$$y_1' = 3y_1 + y_2 y_2' = -y_1 + 3y_2$$

Solution 4. The eigenvalues of the associated matrix A are $3 \pm i$. Therefore a fundamental matrix for this system is given by the matrix exponential

$$\exp(At) = Ie^{3t}\cos(t) + (A - 3I)e^{3t}\sin(t)$$
$$= \begin{pmatrix} e^{3t}\cos(t) & e^{3t}\sin(t) \\ -e^{3t}\sin(t) & e^{3t}\cos(t) \end{pmatrix}$$

The colums of this form a fundamental set of solutions, i.e. a basis for the space of solutions. Thus a basis is

$$\left\{ \begin{pmatrix} e^{3t}\cos(t) \\ -e^{3t}\sin(t) \end{pmatrix}, \begin{pmatrix} e^{3t}\sin(t) \\ e^{3t}\cos(t) \end{pmatrix} \right\}.$$