Math 309 Quiz 4 Practice Solutions

May 18, 2017

Throughout these questions L = T/2 and \mathcal{P}_T will denote the set

$$\mathcal{P}_T = \left\{ f(x) | f(x+T) = f(x) \text{ for all } x \text{ and } \int_{-L}^{L} f(x)^2 dx < \infty \right\}.$$

Then

Problem 1. TRUE or BANANAS? Suppose f(x) is in \mathcal{P}_T and has the Fourier series

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{m=1}^{\infty} b_m \sin\left(\frac{m\pi x}{L}\right).$$

Then a_0 is the average value of f(x) on [-L, L].

Solution 1. TRUE.

Problem 2. TRUE or BANANAS? Consider the periodic function with period 3 defined by

$$f(x) = \begin{cases} x & 0 \le x < 1\\ 1 & 1 \le x < 2\\ 0 & 2 \le x < 3 \end{cases} \text{ with } f(x+3) = f(x) \text{ for all } x.$$

The Fourier series of f(x) converges to 1 at x = 1.

Solution 2. TRUE (converges to 1 by the Pointwise Convergence Theorem).

Problem 3. TRUE or BANANAS? Let f(x) be the same function as in the previous problem. The Fourier series of f(x) converges to 1 at x = 2.

Solution 3. BANANAS (converges to 1/2 by the Pointwise Convergence Theorem).

Problem 4. Calculate the Fourier series for the function

$$f(x) = x$$
 for $-L \le x < L$ with $f(x + 2L) = f(x)$ for all x.

Solution 4. The function f(x) is odd, so we know immediately that $a_n = 0$ for all $n \ge 0$. Therefore we need only calculate the b_n 's. To do so, we will use the Euler-Fourier formula:

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{m\pi x}{L}\right) dx$$

$$= \frac{1}{L} \int_{-L}^{L} x \sin\left(\frac{m\pi x}{L}\right) dx$$

$$= \frac{-1}{m\pi} x \cos\left(\frac{m\pi x}{L}\right) |_{-L}^{L} + \frac{1}{m\pi} \int_{-L}^{L} \cos\left(\frac{m\pi x}{L}\right) dx$$

$$= \frac{-2L \cos(m\pi)}{m\pi}$$

$$= \frac{2L}{m\pi} (-1)^{m+1}.$$