Math 324 Quiz 1 Solution

January 24, 2017

Make sure to **show your work**! If you need additional space, please write on the back. Don't forget to **have fun**!

Problem 1. Find the volume of the tetrahedron enclosed by the coordinate planes and the tetrahedron 2x + 3y + 4z = 5. You *must* use integrals, just quoting a general formula is worth nothing. [Bonus: instead work out the general case, when the plane is ax + by + cz = d with a, b, c, d non-negative constants and with d > 0].

Solution 1. The intersection of the plane 2x + 3y + 4z = 5 with the x, y-plane z = 0 is 2x + 3y = 5. Therefore the shadow the tetrahedron casts on the x, y-plane is the region between the x-axis, the y-axis, and this line. Therefore x ranges between 0 < x < 5/2 and for each fixed x, y ranges $0 \le y \le -2x/3 + 5/3$. To find the volume of the region R, we integrate 1:

$$V = \int \int \int_R 1 dV.$$

The region is bounded below by the surface z = 0, and above by the surface z = -x/2 - 3y/4 + 5/4. Therefore

$$V = \int_{0}^{5/2} \int_{0}^{-2x/3+5/3} \int_{0}^{-x/2-3y/4+5/4} 1dzdydx$$

= $\int_{0}^{5/2} \int_{0}^{-2x/3+5/3} -x/2 - 3y/4 + 5/4dydx$
= $\int_{0}^{5/2} -x(-2x/3+5/3)/2 - 3(-2x/3+5/3)^2/8 + 5(-2x/3+5/3)/4dx$
= $\int_{0}^{5/2} \frac{1}{24}(2x-5)^2dx = \frac{125}{144}$

In fact, in general if the plane forming the tetrahedron is ax + by + cz = d

for some a, b, c, d positive, then the volume is

$$V = \int \int \int_{R} \int_{R} 1 dV$$

= $\int_{0}^{d/a} \int_{0}^{-ax/b+d/b} \int_{0}^{-ax/c-by/c+d/c} 1 dz dy dx$
= $\int_{0}^{d/a} \int_{0}^{-ax/b+d/b} -ax/c - by/c + d/c dy dx$
= $\int_{0}^{d/a} \int_{0}^{-ax/b+d/b} -y(ax - d + by/2)/c dy dx$
= $\int_{0}^{d/a} \frac{(ax - d)^{2}}{2bc} dx = \frac{d^{3}}{6abc}$

Problem 2. Use cylindrical coordinates to evaluate the integral

$$\int \int \int_R e^{2z} dV$$

where R is the region enclosed by the paraboloid $z = 12 + x^2 + y^2$, the cylinder $x^2 + y^2 = 4$, and the xy-plane.

Solution 2. The region of integration is $x^2 + y^2 \le 4$, and $0 \le z \le 12 + x^2 + y^2$. In cylindrical coordinates, this is $0 \le \theta \le 2\pi$, $0 \le r \le 2$ and $0 \le z \le 12 + r^2$. Therefore the integral is

$$\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{12+r^{2}} e^{2z} r dz dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} \frac{1}{2} (e^{24+2r^{2}} - 1) r dr d\theta$$
$$= \int_{0}^{2\pi} \left(\frac{1}{8} e^{24+2r^{2}} - \frac{r^{2}}{4} \right) |_{r=0}^{2} d\theta$$
$$= \int_{0}^{2\pi} \left(\frac{1}{8} (e^{32} - e^{24}) - 1 \right) d\theta$$
$$= 2\pi \left(\frac{1}{8} (e^{32} - e^{24}) - 1 \right)$$