Math 324 Quiz 5 Practice

February 28, 2017

Problem 1. Suppose that f(x, y, z) is a scalar function and that $\vec{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ is a three-dimensional vector field. Show that

$$\nabla \cdot (f\vec{F}) = f\nabla \cdot \vec{F} + \vec{F} \cdot \nabla f.$$

Problem 2. Suppose that $\vec{F}(x, y, z)$ is a three-dimensional vector field. Show that

$$\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \Delta \vec{F},$$

where here

$$\Delta F = \left\langle \Delta F_1, \Delta F_2, \Delta F_3 \right\rangle,$$

for $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial_y^2 + \partial^2 / \partial_z^2$ the Laplacian operator.

Problem 3. For each value of \vec{F} , determine whether or not \vec{F} is conservative. If it is, find a function f such that $\vec{F} = \nabla f$.

- (a) $\vec{F}(x, y, z) = \langle 3xy^2z^2, 2x^2yz^3, 3x^2y^2z^2 \rangle$
- (b) $\vec{F}(x, y, z) = \langle e^{yz}, xze^{yz}, xye^{yz} \rangle$