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1 Abstract

This is an introduction to concepts, including orbits, fixed points and bifurcation, that will help the reader’s
understanding of the complex nature of dynamic systems. As well as providing definitions, theorems and proofs,
there is an analysis of how different parameters affect the quadratic function, Qc = x2 + c, where c is a parameter.
A method of graphically representing orbits is also presented to aid the reader in understanding how iterative
functions behave.

2 Introduction

Understanding iterative functions can be useful in a range of situations, including determining the amount of
money that will be in a bank account that receives 10% interest rate yearly, or predicting the growth behavior
of a population. By understanding discrete dynamic systems, we can also apply that knowledge to further our
comprehension of continuous dynamic systems. This paper discusses various characteristics of iterative functions
and gives definitions of the relevant terms needed to understand the topic of bifurcation. Also included are
theorems pertaining to fixed points and periodic points. As well as a simple procedure to create Cobweb Plots, a
graphical representation of the behavior of iterative functions. The final part of this paper analyzes the affects a
changing parameter has on a function. Although the concepts addressed in this paper are basic, the purpose of
this paper is to exposing the reader to the topic of bifurcation and hopefully motivate him or her to pursue this
topic and related topic more in depth.

3 Background

3.1 Iterations

In general, iteration is the repeating of a process. In relation to mathematics, and more specifically, functions,
the process is the evaluation a function. The output of the function becomes the input of the next iteration. In
order to denote which iteration we are computing, we write Fn, where F is the function being evaluated and n is
the number of iterations. For example, suppose F (x) = x2 − 1, then

F 2(x) = (x2 − 1)− 1

You can iterate many functions. Some functions that are commonly iterated include, F (x) = λx(1 − x), F (x) =
sin(x) and F (x) =

√
x. The one that we will focus on in particular is the quadratic function, Qc = x2 + c, where

c is a real number. Here, the constants c and λ are called parameters.

3.2 Orbits

Definition 1.1 A seed, x0, is a real or complex number used as a starting point when iterating a function F .

By calculating F (x0), you will have a new number, x1, which you will be able to use for your next iteration.
This output will become your new input, and as before, calculate F (x1) to get x2. As you generate your iterations,
you will get a sequence of points, x0, x1, x2, ..., xn.
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Definition 1.2 The sequence of numbers that results from iterating a function F is known as the orbit of x0
under F , where x0 is the seed of the orbit.

Here is an example, of an orbit of point 0.1 under the function F (x) = 2x(1− x),

x0 = 0.1
x1 = 0.1
x3 = 0.18
x4 = 0.2952

x5 = 0.41611392
x6 = 0.48592625116
x7 = 0.49960385919
x8 = 0.49999968614

and so on...

3.3 Types of Orbits

As you may have guess from the recent example, an orbit can possesses a certain characteristic.

Definition 1.3 If a point x0 satisfies the equation F (x0) = x0, where F is a function, or more generally, if
Fn(x0) = x0, then x0 is known as a fixed point.

Theorem 1.4(Fixed Point Theorem) If F (x) is a continuous function and F (x) ∈ [a, b] for all x ∈ [a, b]
then F has at least one fixed point in [a, b].

Proof. This proof is dependent on the consequences of the Intermediate Value Theorem, which states that if a
function F is continuous on [a, b], and c is any number between F (a) and F (b), including F (a) and F (b), then there
exists a number x such that F (x) = c. To prove the Fixed Point Theorem, suppose F (a) = a or F (b) = b, then F
has a fixed point. Otherwise, F (a) > a and F (b) < b. Let G be a function such that G(x) = F (x)−x. Since G(x)
is continuous, and G(a) > 0 and G(b) < 0, there must exist a c ∈ [a, b] such that G(c) = 0 and therefore a F (c) = c.

The orbit of a fixed point is a constant sequence x0, x0, x0, ..., x0. Unfortunately, the Fixed Point Theorem only
comments on the existence of at least one fixed point and cannot provide an actual method to finding the point.
So, in order to find the fixed points of a function F , find the solution or solutions to the equation F (x) = x. For
example,

F (x) = 2x(1− x)

has fixed points when x = 0 and 0.5.

A fixed point can be attracting, repelling or neutral.

Definition 1.5 Suppose x0 is a fixed point of the function F , then

1. x0 is an attracting fixed point of F , if |F ′
(x0)| < 1

2. xo is a repelling fixed point of F , if |F ′
(x0)| > 1

3. xo is a neutral fixed point of F , if |F ′
(x0)| = 1

Attractive and repellent fixed points are sometimes know as sinks and sources, respectively. Fixed points that
are neutral can behave in various ways. They can be weakly attracting, weakly repelling or neither attracting nor
repelling.

Theorem 1.6 If x0 is an attracting fixed point for a differentiable function F , then there is an ε > 0 such that
x ∈ (x0 − ε, x0 + ε) satisfies the following condition:
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1. fn(x) ∈ (x0 − ε, x0 + ε) for all n > 0

2. As n approaches infinity, fn(x) approaches x0 for all x ∈ (x0 − ε, x0 + ε)

Proof. Since F is differentiable everywhere, it is continuous. Using the Mean Value Theorem and the definition

of an attracting fixed point,
∣∣∣F ′

(x0)
∣∣∣ < λ < 1, for some λ > 0. By the continuity of the derivative at x0, there is

a ε > 0 such that F
′
(x0) < λ on the interval I = (x0 − ε, x0 + ε). So,

F
′
(c) = F (x)−F (x0)

x−x0

for some c between x0 and x.
So,

|F (x)−F (x0)|
|x−x0| =

∣∣∣F ′
(c)
∣∣∣ < λ

|F (x)− F (x0)| < λ |x− x0|

The distance from F (x) to x0 decreases by a factor of λ because,

|F (x)− x0| = |F (x)− F (x0)| < λ |x− x0|

Since, F maps x ∈ (x0 − ε, x0 + ε) to itself. The distance from F (x) to x0 decreases.
It can also be said that, ∣∣F 2(x)− x0

∣∣ =
∣∣F 2(x)− F 2(x0)

∣∣ < λ |F (x)− x0| < λ2 |x− x0|

and,
|Fn(x)− (x0)| < λn |x− x0|

for λ < 1, λn converges to 0. So, as n approaches infinity, Fn(x) approaches x0.

Theorem 1.7 Let x0 be a repelling fixed point of the differential function F . Then there exists an ε > 0 such
that if x ∈ (x0 − ε, x0 + ε) and x0 6= x, then there exists a n > 0 such that fn(x) 6∈ (x0 − ε, x0 + ε).

Proof. Since F is a differentiable everywhere, it is continuous. By the Mean Value Theorem and the definition

of a repelling fixed point,
∣∣∣F ′

(x0)
∣∣∣ > λ > 1, for some λ > 0. By the continuity of the derivative at x0, there is a

ε > 0 such that F
′
(x0) > λ on the interval I = (x0 − ε, x0 + ε). So,

F
′
(d) =

F (x)− F (x0)

x− x0

for some d between x0 and x.
So,

|F (x)−F (x0)|
|x−x0| =

∣∣∣F ′
(d)
∣∣∣ > λ

|F (x)− F (x0)| > λ |x− x0|

So, the distance |F (x)− F (x0)| can be written as follows,

|F (x)− x0| = |F (x)− F (x0)| > λ |x− x0|

Since λ > 1, we have that F (x) get further and further away from x0. If F (x) 6∈ (x0 + ε, x0 + ε), then the proof
is done. But if this not the case, then repeat the process above, replacing x with F (x) in (x0 + ε, x0 + ε). This
results in,
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∣∣F 2(x)− x0
∣∣ =

∣∣F 2(x)− F 2(x0)
∣∣ > λ |F (x)− x0| > λ2 |x− x0|

Recall, that λ > 1. So, λ2 > λ.
By continuing to apply F to x and x0, the distance between Fn(x) and x0 increases. In general, we have the

following, under the condition that fn−1(x) ∈ (x0 + ε, x0 − ε)

|Fn(x)− x0| > λn |x− x0|

So, as n approaches infinity, λn approaches infinity. Nearby points eventually move away from the fixed point.
There exists some n > 0 such that

|Fn(x)− x0| > λn |x− x0| > ε

Now that we have discussed fixed points in depth, let us move on to another type of point. The second type of
point that we will talk about is called a period point.

Definition 1.8 A point x0 of function F is periodic, if there exists an n so that x0 is a fixed point of Fn(x),
meaning it satisfies Fn(x0) = x0.

Definition 1.9 A cycle of period n is an orbit that repeats itself every n iterations.

For example, 0 lies on a cycle of period 2 for x2 − 1 since its orbit is 0,−1, 0,−1, ....Furthermore, a period-2
cycle would two points, x0 and x1 such that F (x0) = x1 and F (x1) = x0. More generally, an n-cycle would take
the form

x0, x1, x2, ..., xn−1, x0, x1, ...

To determine if a period point is attracting, repelling or neutral, recall the Chain Rule and consider the
derivative Fn(x0). With the Chain Rule, we know that if we have two differentiable functions F and G, then

(F ◦G)
′
(x) = F

′
(G(x)) ·G′

(x)

So,

(F 2)
′
(x0) = F

′
(F (x1)) · F

′
(x0) = F

′
(x1) · F

′
(x0)

and

(F 3)
′
(x0) = F

′
(F 2(x0)) · (F 2)

′
(x0) = F

′
(x2) · F

′
(x1) · F

′
(x0)

So, (Fn)i = F
′
(xn−1) · ... · F

′
(x0), where x0, ..., xn−1 lie on a cycle of period n for F and xi = F i(x). The

derivative of Fn at x0 is simply the product of the derivative for F at all points on the orbit. This means that we
don’t have to know the equation for Fn, just the points on the orbit.

3.4 Graphical Representation of Orbits

One tool to help quickly visualize an orbit of a dynamical system is called a Cobweb Plot. To construct a
Cobweb Plot of a function F (x), first draw the graphs x = y and f(x) = y on the same set of x and y axis. Then,
plug the initial value, x0 into the function F . On the graph, draw a vertical line from x0 on the x-axis to the point
(x0, F (x0)) = (x0, x1). Now draw a horizontal line over the x = y line. This is the point (x1, x1). Now repeat the
process. So, draw a vertical line up to (x1, F (x1) = (x1, x2). Then draw a horizontal line to (x2, x2). To create
more iteration, keep repeating this process. Here is an example of Cobweb Plot:
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Figure 1: F (x) = cos(x) and x0 = −0.25

Cobweb Plots make it easy to identify the different types of points, whether they be fixed or periodic; or
attractive, repellent, or neutral.

4 Bifurcation

Bifurcation occurs in one-parameter family of functions when there is a change in the point structure as the
parameter λ passes through some particular parameter value, λ0.

Bifurcation refers to the changes in the set of fixed or periodic points or other sets of dynamic interest. Although
there are many types of bifurcation, we will discuss two of them. The first is a Saddle-node or Tangent Bifurcation.
We will see a specific example of this in a quadratic function. But for now, consider one-parameter family of
functions, Fλ,with λ being the parameter. For example, the functions Fλ(x) = λx(1−x) and Sλ(x) = λsin(x) are
both one-parameter functions.

4.1 Saddle-node or Tangent Bifurcation

Definition 1.10 A function Fλ undergoes a Saddle-node (or Tangent) Bifurcation at the parameter λ0 if there
is an ε > 0 such that on the interval (λ0 − ε, λ0 + ε), there exists a λ and

1. For λ0 − ε < λ < λ0, Fλ has no fixed points in the interval

2. For λ = λ0, Fλ has one fixed point in I and that point is neutral

3. λ0 < λ < λ0 + ε, Fλ has two fixed points on I and one attracting and another repelling

Note, a bifurcation can also occur in the reverse direction. So, the above definition can also be written as:

1. For λ0 + ε > λ > λ0, Fλ has no fixed points in the interval

2. For λ = λ0, Fλ has one fixed point in I and that point is neutral

3. λ0 > λ > λ0 − ε, Fλ has two fixed points on I and one attracting and another repelling

Basically means a Saddle-node Bifurcation occurs if the functions Fλ has no fixed points on an interval (λ0−ε, λ0+ε)
for λ-values slightly less than λ0, one fixed point in (λ0−ε, λ0 +ε) when λ = λ0 and exactly two fixed points when
λ > λ0. Periodic points may undergo a Saddle-node Bifurcation. These are described by simply replacing Fλ with
Fn( λ) for the cycle of period n in the above definition. Saddle-node Bifurcation typically occurs when the graph

of Fλ0 is tangent with the diagonal at (x0, x0), F
′
(x0) = 1, but F

′′
(x0) 6= 0. This indicates that the graph of Fλ0

is either concave up or down, so that near x0, Fλ0 has only one fixed point x0. The fact that Fλ0 is tangent to the
diagonal at x0 is the reason for the terminology tangent bifurcation. Bifurcation theory is a local theory in that
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Figure 2: In Graph 1, λ > λ0; in Graph 2, λ = λ0; and in Graph 3, λ < λ0

we are only concerned about the changes in the periodic point structure near the parameter value λ0. That is the
reason for the ε in the definition (ε is usually small).

An example of a Saddle-node Bifurcation, is at the parameter λ = 1
4 of the function Qλ = x2 + λ. Let us take

the interval I to be the entire real line. Also, let λ0 = 1
4 . Then conditions in Definition 1.10 are satisfied. In

Graph 1, there are no fixed points when λ = 1
2 >

1
4 . In Graph 2, there is a neutral fixed point when λ = 1

4 . And
in Graph 3, there is a pair of fixed points (1 attracting and 1 repelling) for λ = −3

4 <
1
4 .

The images above, give a visual representation of a Saddle-node Bifurcation. Graph 2 also is able to show the
behavior of the neutral point which acts like neither a repelling nor an attracting fixed point, depending if x0 is
greater than or less than 0.5 .

4.2 Period-doubling Bifurcation

Now that we have discussed Saddle-node Bifurcation more generally, let us do the same with the second type
of bifurcation, Period-doubling Bifurcation.

Definition 1.11 A one-parameter family of function Fλ undergoes a Period-doubling Bifurcation at the pa-
rameter value λ = λ0 if there an ε > 0 such that on the interval (λ0 − ε, λ0 + ε) there exists a λ and :

1. For each λ ∈ [λ0 − ε, λ0 + ε], there is a unique fixed point pλ for Fλ in the interval

2. For λ0 − ε < λ ≤ λ0: Fλ has no cycles of period 2 in λ ∈ [λ0 − ε, λ0 + ε] and pλ is attracting or repelling

3. λ0 < λ < λ0 + ε1, Fλ: there is a unique 2-cycle q1λ, q2λ in λ ∈ [λ0 − ε, λ0 + ε] with Fλ(q1λ) = q2λ. This 2-cycle
is attracting or repelling, while the fixed point pλ is attracting or repelling

4. As λ approaches λ0, q1λ approaches pλ0

Thus there are two typical cases for a Period-doubling Bifurcation. As the parameter changes, a fixed point may
change from attracting to repelling and simultaneously, create an attracting 2-cycle. Alternatively, the fixed point
may change from repelling to attracting and create a repelling cycle of period 2. Also, cycles may undergo a
Period-doubling Bifurcation. In this case, a cycle of period n will give birth to a cycle of period 2n.

Period-double Bifurcation occurs when the graph of Fλ is perpendicular to x = y, or equivalently, when
F

′
(pλ0) = −1. By the Chain Rule, it follows, that

(F 2
λ )

′
(pλ0) = F

′
λ(F (pλ0)) · F ′

λ(pλ0)

Since pλ0 is a fixed point,

F (pλ0) = pλ0
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and since

F
′
(pλ0) = −1

So,

(F 2
λ )

′
(pλ0) = −1 · −1 = 1

The graph of the second iterate of Fλ is tangent to the diagonal when the Period-doubling Bifurcation occurs.
We will soon see an example of this when c = −3

4 for the quadratic family Qc(x) = (x2 + c).

5 Quadratic Family of Functions

Now that we have gone over basic concepts and terms, we will study and observe orbits for the quadratic family
of functions which includes all functions in the form F (x) = x2 + c, where c is any real constant. Let us denote
a function in the quadratic family as Qc. We will try and understand how the dynamics of Qc will change as c
varies. By using the method previously state, we set Qc(x) = x2 + c equal to x. The two roots that we get are,

p+ = 1
2(1 +

√
1− 4c)

p− = 1
2(1−

√
1− 4c)

So, in order for p+, and p− to be real roots, 1 > 4c, or equivalently, c ≤ 1
4 . Let us look more closely at points

p+ and p−, when c < 1
4 .

5.1 When c < 1
4

Since Q
′
c = 2x,

Q
′
c(p+) = 2 · 12(1 +

√
1− 4c) = 1 +

√
1− 4c

Q
′
c(p−) = 2 · 12(1−

√
1− 4c) = 1−

√
1− 4c

If c < 1
4 , as a result, Q

′
c(p+) > 1. This means that p+ is a repelling fixed point. If c = 1

4 , then Q
′
c(p+) = 1 and

so there is a neutral fixed point. Now let us look at p−. If c = 1
4 , then Q

′
c(p−) = 1, which means p+ = p− = 1

2 is

a neutral point. Since if
∣∣∣Q′

c(p−)
∣∣∣ < 1, then p− is attracting,∣∣∣Q′

c(p−)
∣∣∣ < 1

−1 < Q
′
c(p−) < 1

−1 < 1−
√

1− 4c < 1
2 >
√

1− 4c > 0
4 > 1− 4c > 0
3 > −4c > −1
−3

4 < c < −1
4

Hence, p− is attracting when −3
4 < c < 1

4 , neutral when c = 1
4 and repelling when c < −3

4 . So, as c decreases
from 1

4 to −3
4 , Qc has one single fixed point to two fixed points. This is a kind of bifurcation known as the

Saddle-node or Tangent Bifurcation.

5.2 When −3
4
< c < 1

4

For any c < −3
4 , a cycle of period 2 appears. To see this, we solve for Q2

c = x. So,

Q2
c = (x2 + c)2 + c = x4 + 2cx2 + c2 + c = x

x4 + 2cx2 + c2 + c− x = 0

We already know two solutions to this equation (they are the two fixed points, p+ and p−). Hence, x − p+ and
x− p− are factors for this equation. Since, p+ and p− are fixed points, they solve the equation
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x2 + c = x

So,

(x− p+)(x− p−) = x2 + c− x = 0

To find the other two solutions,

x4+2cx2+c2+c−x
x2+c−x = x2 + c− x

Therefore, the other solutions for this quadratic are the roots, q± = 1
2(−1±

√
−4c− 3). Notes, that q is only

real if −4c − 3 ≥ 0, or equivalently, c ≤ −3
4 . As c decreases below −3

4 , the fixed p− changes from attracting
to repelling and a new 2 period cycle appears at q±. As previously discussed, this is called Periodic-doubling
Bifurcation. Notice, that when c = −3

4 , we have q+ = q− = −1
2 which is equal to p. So, these two periodic points

originated at p.

5.3 When c = −2

When c = −2, p+ = 1
2(1 +

√
1− 4 · (−2)) = 2. If we look at the interval [−2, 2], which we will call I, the

function Q−2 = x2 − 2 decreases on the interval [−2, 0] and increases on the interval [0, 2]. It is also evident, that
Q−2 maps exactly two points in I to the same point. So, every point(except for −2) in the image of the interval
I has exactly 2 preimages. Also, there are two fixed points, p− and p+

Now, if you look at Q2
−2 on the interval I, there are 4 preimages for every point (except for −2). Also, the line

x=y intersects with Q2
−2 4 times, so there are 4 fixed points.

A similar result occurs when looking at Q3
−2 and larger iterations of Q−2. In general, the function Q−2 has at

least 2n periodic points of period n in the interval [−2, 2].
This seems to contradict what we saw when c ≥ −3

4 , which was that there are very few fixed and periodic
points. But, as c made a small decrease to −2, the result was infinitely many periodic point. As a result, the
orbits have become more random. Below is a image of two orbits on the function F (x) = x2 − 2.2

Figure 3: Orbit with inital value 0.1 (orange line) and 1.3 (red line)

6 Future Direction of Study

We have just briefly seen how a function can transform from simple to very complex dynamics. To learn more
about the topic and gain a greater understanding of why this occurs, we would need to learn how to read orbit
diagrams and use symbolic dynamics to convert the complicated behavior that we have witnessed into a different
dynamical system which we can understand fully. Also, understanding Cantor’s Middle-Third Set would also be
useful. To find more information about this, a helpful resource would be the textbook An Introduction to Symbolic
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Dynamics and Coding by Douglas Lind and Brian Marcus, and A First Course in Chaotic Dynamical Systems:
Theory and Experiment by Robert Devaney. Learning about the properties of chaotic systems, will eventually
lead to bigger and more complex topics like Sarkovskii’s Theorem, Newton’s Method and Fractals.

7 Conclusion

Hopefully after reading this paper in its entirety, you now know how to iterate functions, find fixed points
or periodic points, and determine if a Saddle-point or Period-doubling bifurcation has occurred. Understanding
under what conditions an repelling or attracting fixed points can occur and how, will help you get a better idea
of how the dynamic system behaves as a whole. All things mentioned in this paper are to help you understand
and describe dynamic system. The difficulties that are presented, for instance, like trying to find points associated
with a cycle of period n, where n is large is hopefully a motivator to discover and learn different method what
would more easily finding these points. It is by thoroughly grasping these concepts will you be able to go into the
complexities of this topic.

8 Bibliography

Alligood, Kathleen T., Tim Sauer, and James A. Yorke. Chaos: An Introduction to Dynamical Systems. New
York: Springer, 1997. Print.

Devaney, Robert L.A First Course in Chaotic Dynamical Systems: Theory and Experiment. Reading, MA:
Addison-Wesley, 1992. Print.

Gurney, David. ”Cobweb Diagrams with Excel.” Diss. Southeast Louisiana University, 2004. Abstract. N.p.,
n.d. Web. <http://archives.math.utk.edu/ICTCM/VOL17/C005/paper.pdf>.

Ulcigria, Corinna. ”Quadratic Maps: Attracting and Repelling xed Points.” University of Bristol. N.p., n.d.
Web. <http://www.maths.bristol.ac.uk/ maxcu/QuadraticMap.pdf>.

9


