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Abstract

For a given stochastic process exhibiting the Markovian property that de�nes a walk on a �nite graph G de�n-

ing some polyhedron or arbitary, the probability for a particle to start and end at two not necessarily distinct

points after N steps is determined by the adjacency matrix Adj(G). With this, concepts of null and non-null

structures, and step saturation are to be explored.

Introduction

Combining the mathematical technologies developed in the �elds of stochastic processes and graph
theory, for a given �nite graph that is either arbitrary or de�ning a polyhedron, we will determine
the probability that a particle will end at some point of interest if it starts at some initial point and
its walk is Markovian and random. It will be assumed that the particle may not land on the edges
connecting points�if it helps with visualizing, the edges can be thought of as two way ski lifts running
o� a perpetual motion motor (and hence will never stop!). It will be instructive and formative to give
background information about several topics that will not necessarily be used in the development of
the theory presented in this paper. The reasoning for this is to build an appropriate intuition and give
some background material to fall back on lest confusion arises.

Background

To begin our studies in background information we will start with some theory of stochastic processes.
This will allow us to have the background to dive into Markov chains, the Chapman-Kolmogorov equa-
tion, and random walks. However, we will explore a bit of graph thoery before random walks.

Stochastic Processes[a]

We shall introduce a mathematical object called a random experiment with de�ning property that it can
produce exactly one outcome indeterminate prior to the production. Denote the random experiment
as E and its outcome, O(E). Each E will have a set of possible outcomes attributed to it. This set is
called the statespace, S. The subsets E ⊆ S are called events and are said to occur in E if O(E) ∈ E.
Given that each E ( S cannot be said to de�nitely occur by the nature of E , there shall be attributed
to each E a probability P (E) that abide the following axioms

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of events E1,E2,... that are mutually exclusive, that is, events for which Ei∪Ej =
∅ when i 6= j, P (∪∞i=1Ei) =

∑∞
i=1 P (Ei).

Given a random experiment with statespace S, a random variable X maps from each outcome in S a
real value with probability of X taking a real value in a set of real values A being

P (X ∈ A) = P (X−1(A))
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where X−1(A) is the event consisting of all points s ∈ S such that X(s) = A.

If we have a index set N and random variables X(n) with n ∈ N , the collection X = {X(n)|n ∈ N}
is called a stochastic process�note we can relable for convenience X(n) as Xn.

De�nition (Markov Chains)[a]. Suppose we are given a stochastic process X = {Xn|n ∈ N} that

takes on �nite values. Suppose there are �xed probabilities from X starting in state i and continues to

state j and denote them as

Pij = P{Xn+1 = j|Xn = i,Xn+1 = in−1, ..., X0 = io}.

The process of X transitioning from i to j is then called a Markov chain.

By the condition Pij being that Xn+1 = j|Xn = i,Xn+1 = in−1, ..., X0 = io it is to be understood that

the probability is attributed only to going from i to j regardless of previous states; this independence is

called the Markovian property.

With this de�nition given, we may go on to a more general notion where we consider going from a state
i to a state j after n transitions, or steps. However, the following equation is given only to mention in
the Future Directions Of Study section and not for the theory of the subject detailed in this paper.

De�nition (Chapman-Kolmogorov Equations)[a]. Suppose we are given a stochastic process

X = {Xn|n ∈ N} that takes on �nite values. Suppose we are interested in the probability of X starting

in state i and after n steps ending in state j. We denote this as

Pn
ij = P{Xn+m = j|Xm = i} with n ≥ 0, i, j,≥ 0.

To determine this probability we can use the Chapman-Kolmogorov equation

P
(n+m)
ij =

∞∑
k=0

Pn
ikP

m
kj .

What the Chapman-Kolmogorov equation is stating is that the probability from going from state i to
state j in n+m steps is equal to the sum of product of probabilities of transitions from state i to state
k in n steps and transitions from state k to state j in m steps. To further clarify, let us go through
three examples of n + m = 2

Example I[b]

P 2
ij = P (Xn+2 = j|Xn = i)

=

∞∑
k=0

P (Xn+2 = j,Xn+1 = k|Xn = i)

=

∞∑
k=0

P (Xn+2 = j|Xn+1 = k,Xm = i) · P (Xn+1 = k|Xn = i)
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=

∞∑
k=0

PkjPik.

Example II

Let n + m = 4 in the Chapman-Kolmogorov equation. Then we see

P 4
ij = P (Xn+4 = j|Xn = i)

=

∞∑
k=0

P 2
kjP

2
ik

=

∞∑
k=0

[( ∞∑
l=0

PljPkl

)
·

( ∞∑
m=0

PmkPim

)]
.

We can generalize this result further.

Example III

Or in general for n + m = N , if we continue to divide as we did for n + m = 4

PN
ij =

∑
k0

[(∑
\
∏

(i, k0)
)
·
(∑

\
∏

(k0, j)
)]

where ∑
\
∏

(i, k0) =
∑
k1

[
· · ·

[(∑
ki

P
N
2i

iki
P

N
2i

kiki−1

)
·

(∑
ki

P
N
2i

ki−1ki
P

N
2i

kik0

)]
· · ·

]
,

∑
\
∏

(k0, j) =
∑
k1

[
· · ·

[(∑
ki

P
N
2i

k0ki
P

N
2i

kiki−1

)
·

(∑
ki

P
N
2i

ki−1ki
P

N
2i

kij

)]
· · ·

]
.

A similar equation can be derived when n and m do not add up to an even number; to do so, just
divide PN into PN−1P 1, and then divide the PN−1 as above since N − 1 will be even.

Graph Theory[c]

Since we will be dealing with walks on �nite graphs, de�nitions of both need to be established.

De�nition (Graph). Consider a non-empty set of points and another set containing pairs of distinct
points where the points are from the former set. We say G is the former set with the latter assigned
to it with the latter being called the lines (or edges) of the set.

Example. Consider a octahedron. Then the vertices of this polyhedron make up the set of points
and the edges the set of distinct pairs of a graph (i.e., the lines).
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De�nition (Walk). Consider a graph G = {g1, g2, ..., gM}. Then a sequence of N points is a N -step
walk on the graph G if the points of the sequence are points of G and are connected in the sense that
there exists a line as a pair of the two points contained in the graph. A random walk will be one where
the sequenced is de�ned by a random variable such that after a known initial point, the next point
will not be known until the next step is taken.

Random Walks[d]

It will be crucial to have an example to fall back onto when trying to understand parts of this paper.
This is why a random walk on a single axis with equal probability of 1

2 of going one way or the other
is to be explained here�with this knowledge, when trying to understand why a particle starting at a
point can, via randomly walking, can arive at another, one will have a concrete example in accepting
such a result.

Consider a particle initially at the origin of an axis we will call the x-axis; i.e., the particle will be at
x = 0 at t = 0, where t is time. Letting ∆t be the interval of time between each displacement of ∆x or
−∆x, we have the random variable Xi taking on Xi = +∆x or Xi = −∆x. Since we are giving both
displacements an equal probability we have P 1

ij = 1
2 for all i and j = i + 1. We also have a notion of

net displacement being
X = X1 + X2 + · · ·+ Xn

for n steps. When considering the expectation value of X, 〈X〉, and variation (or standard deviation)1

of X, var{X}, we �nd something interesting. For the former, from

〈Xi〉 =
1

2
∆x− 1

2
∆x,

we have
〈X〉 = 〈X1〉+ 〈X2〉+ · · · 〈Xn〉

= 0.

However, for the latter, from
var{Xi} =

〈
X2

i

〉
− 〈Xi〉2

=
〈
X2

i

〉
=

1

2
(∆x)2 +

1

2
(−∆x)2

= ∆x2,

we see 〈
X2
〉

=
〈
X2

1

〉
+
〈
X2

2

〉
+ · · ·

〈
X2

n

〉
= ∆x2 + ∆x2 + · · ·∆x2

= n∆x2

= t
∆x2

∆t
,

1It is assumed the reader has came across expectation values and standard deviation by now. If not, refer to [d] in
bibliography where this example is modeled o� of.
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where the last equality comes from the fact that n = number of steps
time interval . This result tells us something

interesting given that after n steps, the average displacement from the mean is n∆x2 and hence we
would expect a particle in such a system to be found, after n steps, not at the origin.

The Adjacency Matrix[c]

Given a walk W = {w1, w2, ..., wN} of N steps, we denote the total amount of walks possible from gi
to gj of a graph G = {g1, g2, ..., gM}, M �nite, in N steps as WN (gi; gj), with W0(gi; gj) vanishing for
i 6= j and unity for i = j. Assuming we can always determine W1 by simply counting, we can reduce
the problem of �nding WN into the following summation,

WN (gi; gj) =
∑
gl∈G
WN−1(gi; gl)W1(gl; gj)

=
∑
gl∈G

∑
gm∈G

WN−2(gi; gm)WN−1(gm; gl)W1(gl; gj)

where the second equality demonstrates we can always reduce the �rst equality into a summation of N
W1's. To expound on this summation let us consider an example with the graph G = {g1, g2, g3} that
constructs a triangle and say we want to determine W3(g1; g3). Well, by exhaustion we can determine
this to be three. But we can also be tricky. We know thatW1(g1; g3) =W1(g2; g3) = 1,W2(g1; g1) = 2
and W2(g1; g2) = 1, with the latter found by minimal exhaustion. What this tells us is that from each
walk pertaining to W2(g1; g1), from W1(g1; g3) there is only a one 1-step walk to get to g3 and hence
we count two. Similarly, for the other 2-step walk, we count one. Therfore ending with three possible
walks.

With the functions WN de�ned, we now introduce a tool that will be extremely useful in determining
the probabilities of interest; this tool is called the adjacency matrix.

De�nition (Adjacency Matrix). Given a graph G = {g1, g2, ..., gM} with M �nite and WN (gi; gj)
with gi, gj ∈ G, we de�ne the adjacency matrix as a matrix Adj(G) with elements

aij =W1(gi; gj).

With this de�nition and the de�nition of WN , we have that

WN (gi; gj) =
[
Adj(G)N

]
ij
.

But what use is this? Suppose we have a graph G = {g1, g2, ..., gi, ..., gM} and we want to know the
probability that a Markovian stochastic walk starting at g1 and ending at gi after N steps. First,
we construct Adj(G) by aij = W1(gi; gj). Second, we calculate Adj(G)N . Lastly, we simply do the
following division

PN
g1gi =

WN (g1; gi)∑
gj∈G
WN (g1; gj)

.

All this division is stating is that the probability from getting from g1 to gi is the total number of ways
to get from g1 to gi divided by the total number of routes of N steps starting at g1.
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Analysis & Theory

We start o� our exposition with detailing the probabilities and properties associated with a random
walk on a relatively simple graph. From this we dive into null and non-null steps which will allow us to
state the Step Saturation theorem. It should be mentioned that some of the results will be supported
not by proofs but large data sets; however, it should be mentioned that how one would proof these
concepts is given.

Random Walks On A Triangle

Before we dive in, it might be worth making a prediction for motivation. The prediction being thus:
Give a graph that describes a triangle and a random walk of N steps on the graph, as N becomes
arbitarly large, the probability of �nding a particle at any point irregardless of its starting point will
tend to 1

3 . One might imagine this plausible because for su�ciently large N it will seem the information
of the initial state will be lost in the limit. Let us now dive in.

Consider a graph G = {g1, g2, g3} that constructs a triangle. Then we have the adjacency matrix

Adj(G) =

0 1 1
1 0 1
1 1 0

 .

For a walk of N = 1 from g1 to g2 we should expect P 1
12 = 1

2 since the particle has only two options
to move in one step from g1. We thus have

P 1
12 =

W1(g1; g2)∑
gj∈G
W1(g1; gj)

=
1

1 + 1

=
1

2
,

which is what was expected.

What about two steps? Using the matrix method, we have

Adj(G)2 =

2 1 1
1 2 1
1 1 2


and hence

P 2
12 =

W2(g1; g2)∑
gj∈G
W2(g1; gj)

=
1

2 + 1 + 1

=
1

4
.
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We now list results for higher N2

N fraction decimal

5 5
16 0.3125

25 5592405
16777216 ∼ 0.3333333135

50 ∼ 1.87·1014
5.629·1014 ∼ 0.333...

75 ∼ 1
3 ∼ 0.333...

100 ∼ 1
3 ∼ 0.333...

We see even at N = 25 the probability is approaching 1
3 . At higher N , the values are even closer.

This supports the prediction we made earlier. We will discuss how to possibly prove it in the Future
Directions Of Study section.

We shall now demonstrate this process for more complicated structure.

Random Walks On A Cube

Consider a graph G = {g1, g2, ..., g8} that constructs a cube. For sake of being succint, we shall compute
Adj(G) to implicitly detail which points are connected to which. We get for the matrix

Adj(G) =



0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


.

Notice we have the symmetry and number of nonzero entries in each row as we would expect�each
point can connect to at most three points.

Using the same equation as we did for the triangle we �nd, as an example, for N = 6, we have a
probability of P 6

g1g8 = 20
81 . There is something interesting that happens for other values of N . We �nd

that for odd values of N we have a vanishing probability. The reasoning for this will be understood
after we discuss null structures.

Non-null Structure

By structure we will mean a subgraph with a speci�c characteristic. The �rst structure we will meet
is the non-null structure.

De�nition (Non-null Structure). Given a graph G = {g1, g2, ..., gM}, if there exists a subgraph

GN ⊆ G such that PNgigj > 0 for any gj ∈ GN (gl, ..., gm) and gi ∈ G for some walkW = {w1, w2, ..., wN },
we call the subgraph a non-null structure of order N and liberator on points gl, ..., gm because it liberates

PNgigj from being restriced to zero for gj ∈ {gl, ..., gm}.

2These values were determined using TI-BASIC on a TI-83; refer to end of paper to see code used.
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We have already encountered a non-null structure; namely the graph de�ning the triangle. To see
this non-null structure in a more interesting case, consider the tetrahedron. For large enough N , the
particle can always circle around the triangle made by the remaining points not desired to end on for
N − 1 steps. But because each point of that triangle, i.e., the non-null structure, are connected to the
desired point, the particle can land on the desired point at the Nth step. This leads to the following
theorem.

Theorem (Step Saturation). Suppose we have a graph G = {g1, g2, ..., gM} and a non-null structure

GN of G. Then for large enough N for a walk of N steps, it will always be possible to land on any

point on GN or some points attached to GN .

Proof. Suppose we have a graph G = {g1, g2, ..., gM} and a non-null structure GN of G. Suppose
further we are considering a N -step walk from g1 to gi where gi ∈ GN . If we let M be large enough
so that WM (g1; gi) 6= 0 and have N −M > N , then, by the nature of the non-null structure, it will
always be possible to land on a point of the structure. Furthermore, if we let N be large enough so
that at N − 1 we land on a point g of GN , which, by de�nition of non-null structure, we can, we will
be able to land on any point connected to g at the Nth step. Therefore, both cases of the theorem
have been proven.

De�nition (Null Structure). Given a graph G = {g1, g2, ..., gM}, if there exists a subgraph GN ⊆ G
such that PNgigj = 0 for any gj ∈ GN (gl, ..., gm) and gi ∈ G for some walk W = {w1, w2, ..., wN }, we
call the subgraph a null structure of order N and restrictor on points gl, ..., gm because it restricts PNgigj
to zero for gj ∈ {gl, ..., gm}.

We can understand now why the probabilities of the cube above were zero; namely, there exists a null
structure in the graph that de�ned the cube. In fact, it turns out that the null structure is a square.

Theorem (Square Null Structure). Suppose we have a graph G = {g1, g2, g3, g4} that de�nes a

square in a sensical way. Then there are values of N such that the probability PN
gigj = 0 where gi and

gj are not connected.

Proof. Suppose we have a graph G = {g1, g2, g3, g4} de�ning a square such that g1 and g3 are not
connected. Then we have W1(g1; g3) = 0 since it takes at least two steps to get from g1 to g3. It turns
out that it will always take an even number N of steps to get from g1 to g3 because from

WN (gi; gj) =
∑
gl∈G
WN−1(gi; gl)W1(gl; gj)

we get

WN (g1; g3) =
∑
gl∈G
WN−1(g1; gl)W1(gl; g3)

=WN−1(g1; g2) +WN−1(g1; g4)

=WN−2(g1; g1) +WN−2(g1; g3) +WN−2(g1; g1) +WN−2(g1; g3)

= 2WN−2(g1; g1) + 2WN−2(g1; g3)
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where we used the fact that W1(gi; gi) = 0 for all i and W1 = 1 for all gi and gj connected. To �nish
the proof we will use a contradiction. From

WN (g1; g3) = 2WN−2(g1; g1) + 2WN−2(g1; g3)

we just derived, assume N is odd. Then N − 2 is odd and hence WN−2(g1; g1) = 0 since it will always
take a step away and a step back or four steps around to get from g1 and back; that is to say, N − 2
must be even for WN−2(g1; g1) 6= 0. It then follows

WN (g1; g3) = 2WN−2(g1; g3).

It is then immediate that for N odd, WN = 0 since at N = 3, we have

W3(g1; g3) = 2W1(g1; g3) = 0

and hence by the equation being recursive, all N odd have WN = 0.

Future Directions Of Study

Though the equation

PN
g1gi =

WN (g1; gi)∑
gj∈G
WN (g1; gj)

is su�cient for �nding probabilities, the number of computations for large N can get quite large. This is
where I posit the possibility of using the Chapman-Kolmogorov equation and appropriate symmetries in
summation. As shown above, it is possible to reduce the Chapman-Kolmogorov equation a summation
of summations of, etc. Noting that each summation is summing over the same statespace, it should
be conceivable that one could, using symmetry in the summations, be able to reduce the problem to a
single summation. Assuming this to be possible, if the probability of interest is �nite, using summation
techniques, one could solve for an explicit equation that de�nes the probability desired.

Non-Markovian Walks

There is no reason to restrict the random walk to having the Markovian property. For example, suppose
that once the particle lands on a point, the porbability of a particle landing on it again vanishes. In
this case, we wouldn't need to restrict the walk to N steps because since after each point is reach it's
probability of being reached again vanishes, only a �nite amount of points will be able to be reached;
that is to say, the de�ning property of this kind of walk limits the number of steps for us.

Two Particle Walk

Suppose instead of a single particle walking we have two. There are several probabilities we can seek
in this case. One would be asking What is the probability of the two particles meeting at N steps.
Another would be be asking What is the probability of the two particles meeting at a speci�c point.
There are other variations that can be done.

Other Structures

Considering other possible structures that are null or non-null, using the proof for the square structure,
one can see it pluasible to use a similar proof for other null structures. Similarly, the proof for the
non-null structure can be used for other non-null structures. Once other structures are found, the Step
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Saturation and Step Restriction theorem can be used more powerfully.

Conclusion

After developing some basic theory of the �elds of stochastic proceses and graph theory, we have
seen how to calculate the probability for a particle traveling to and from two points on a �nite graph
whereby the particle's travel abides the Markovian property and is random. Furthermore, we explored
two interested subgraph structures that either restricted or liberated the probability from vanishish.
As was seen, these structures could be used to simplify the process of determining whether or not the
probability for traveling from some point to another would vanish based on whether or the point was
a part of some structure.
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TI-BASIC Code

The follow code was used to determine the probabilities associated with the random walk of steps
N = 1 to N = 100 on a triangle from point g1 to g2.

{1} → L1

{1} → L2

{1} → L3

For(A, 1, 100, 1

[A]�A→ [B]

augment(L1, {[B](1, 2)})→ L1

augment(L2, {A})→ L2

augment(L3, {[B](1, 1)}+ [B](1, 2)}+ [B](1, 3)})→ L3

End

{1} → L4

For(X, 2, dim(L1), 1

augment(L4, {L1(x)/L3(x)})→ L4

End
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